Spring 2020, Math 621: Week 3 Problem Set
Due: Thursday, February 20th, 2020
Rational Generating Functions

Discussion problems. The problems below should be worked on in class.

(D1) Power series of quasipolynomial functions. Recall that in lecture, we saw
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and that the “formal derivative” of A(z) = ag + a1z + agz? +--- is

Al(z) = LA(2) = a1 + 2a22 + 3azz® + -+ = Z(n + Dap+12™.

n=0
(a) Manipulate the first expression to write Y~ nz" as a rational expression in z.
(b) Use formal differentiation to write > - n?z™ as a rational expression in z.
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(c) Use formal differentiation to write > - n®z™ as a rational expression in z.

(D2) Multivariate power series. In this problem, we will explore a geometric interpretation of
rational power series in the ring Q[z1, 22].

(a) Using power series multiplication, find all nonzero terms in
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A(z) =

with total degree at most 10. Plot their exponents as points in R2.

(b) Do the same for the power series
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B(Z) = (1 _ 2;12)(1 — 2122)(1 - Z%)

Label each point with its coefficient in A(z). What does this appear to coincide with?

(c) Find a rational expression for the formal power series

C(z) = Z 2028

(a,b)esS

for each of the following sets S C ZQZO.
(i) S = ((0,2),(1,1),(0,2)
(ii) S ={(a,b) € Z%; : 2a > b}
i (a,b) € Z%; : 2a > b and a > 2}
(a,b) € Z%, : a2y’ € I}, where I = (23, 2%y, %) C Kz, y]
(a,b) € ZQZO sy’ ¢ I}, where I = (23, 2%y, y?) C k[z,y]
(a,b) € Z2, : H(R/I;a,b) # 0}, where I = (27 —23,23) C R = k[z1, 22, 3]



Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Find a rational expression for the formal power series
= Y A,
(a,b)es
where S = {(a,b) € Z2,:a < 2b,b<3a+1,and a +b >3} C Z3,.
(H2) Fix power series A(z) =Y 7 janz" and B(z) =Y " b,z".

(a) Prove that
a
dz
(b) Prove that if by # 0, then

(A(2)B(2)) = A'(2)B(2) + A(2)B'(2).

d /(1 __B'(?)
dz\ B(z))  B(2)?’
(¢) Conclude that if by # 0, then

d<A(Z)) _ A'(2)B(2) — A(2)B'(2))
dz \ B(z) B(z)? '

Hint: parts (b) and (c) can be done without writing any sigma sums!

(H3) Suppose f : Z>¢ — Q is a function, h(z) is a power series, d > 1 and k > 0 are integers, and

(a) Prove that for any k > 0,
S hi(2)
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for some polynomial hy(z) of degree k.

(b) Prove that if f is eventually quasipoynomial of degree at most k and period d, then h
is a polynomial.

(c¢) Prove that if h is a polynomial, then f is eventually quasipolynomial of degree at most
k and period dividing d.

(d) Suppose f is eventually quasipoynomial of degree k and period d, and h is a polynomial.
The dissonance point of f is the smallest integer D such that f |>p is quasipolynomial.
Find a relationship between D the degree of h.

Challenge problems. Challenge problems are not required for submission, but bonus points
will be awarded for submitting a partial attempt or a complete solution.

(C1) Characterize which functions f : Z>¢ — C satisfy
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for some polynomials h(z) and g(z) with coefficients in C.



