Spring 2020, Math 621: Week 3 Problem Set
 Due: Thursday, February 20th, 2020
 Rational Generating Functions

Discussion problems. The problems below should be worked on in class.
(D1) Power series of quasipolynomial functions. Recall that in lecture, we saw

$$
1+2 z+3 z^{2}+\cdots=\sum_{n=0}^{\infty}(n+1) z^{n}=\frac{1}{(1-z)^{2}},
$$

and that the "formal derivative" of $A(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots$ is

$$
A^{\prime}(z)=\frac{d}{d z} A(z)=a_{1}+2 a_{2} z+3 a_{3} z^{2}+\cdots=\sum_{n=0}^{\infty}(n+1) a_{n+1} z^{n} .
$$

(a) Manipulate the first expression to write $\sum_{n=0}^{\infty} n z^{n}$ as a rational expression in z.
(b) Use formal differentiation to write $\sum_{n=0}^{\infty} n^{2} z^{n}$ as a rational expression in z.
(c) Use formal differentiation to write $\sum_{n=0}^{\infty} n^{3} z^{n}$ as a rational expression in z.
(D2) Multivariate power series. In this problem, we will explore a geometric interpretation of rational power series in the ring $\mathbb{Q} \llbracket z_{1}, z_{2} \rrbracket$.
(a) Using power series multiplication, find all nonzero terms in

$$
A(z)=\frac{1}{\left(1-z_{1}^{3} z_{2}\right)\left(1-z_{2}^{2}\right)}
$$

with total degree at most 10 . Plot their exponents as points in \mathbb{R}^{2}.
(b) Do the same for the power series

$$
B(z)=\frac{1}{\left(1-z_{1}^{2}\right)\left(1-z_{1} z_{2}\right)\left(1-z_{2}^{2}\right)} .
$$

Label each point with its coefficient in $A(z)$. What does this appear to coincide with?
(c) Find a rational expression for the formal power series

$$
C(z)=\sum_{(a, b) \in S} z_{1}^{a} z_{2}^{b}
$$

for each of the following sets $S \subset \mathbb{Z}_{\geq 0}^{2}$.
(i) $S=\langle(0,2),(1,1),(0,2)\rangle$
(ii) $S=\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: 2 a \geq b\right\}$
(iii) $S=\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: 2 a \geq b\right.$ and $\left.a \geq 2\right\}$
(iv) $S=\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: x^{a} y^{b} \in I\right\}$, where $I=\left\langle x^{3}, x^{2} y, y^{2}\right\rangle \subset \mathbb{k}[x, y]$
(v) $S=\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: x^{a} y^{b} \notin I\right\}$, where $I=\left\langle x^{3}, x^{2} y, y^{2}\right\rangle \subset \mathbb{k}[x, y]$
(vi) $S=\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: \mathcal{H}(R / I ; a, b) \neq 0\right\}$, where $I=\left\langle x_{1}^{2}-x_{2}^{2}, x_{3}^{3}\right\rangle \subset R=\mathbb{k}\left[x_{1}, x_{2}, x_{3}\right]$ with $\operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{2}\right)=(1,0)$ and $\operatorname{deg}\left(x_{3}\right)=(0,1)$

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Find a rational expression for the formal power series

$$
C(z)=\sum_{(a, b) \in S} z_{1}^{a} z_{2}^{b}
$$

where $S=\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: a \leq 2 b, b \leq 3 a+1\right.$, and $\left.a+b \geq 3\right\} \subset \mathbb{Z}_{\geq 0}^{2}$.
(H2) Fix power series $A(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $B(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$.
(a) Prove that

$$
\frac{d}{d z}(A(z) B(z))=A^{\prime}(z) B(z)+A(z) B^{\prime}(z)
$$

(b) Prove that if $b_{0} \neq 0$, then

$$
\frac{d}{d z}\left(\frac{1}{B(z)}\right)=-\frac{B^{\prime}(z)}{B(z)^{2}}
$$

(c) Conclude that if $b_{0} \neq 0$, then

$$
\frac{d}{d z}\left(\frac{A(z)}{B(z)}\right)=\frac{\left.A^{\prime}(z) B(z)-A(z) B^{\prime}(z)\right)}{B(z)^{2}}
$$

Hint: parts (b) and (c) can be done without writing any sigma sums!
(H3) Suppose $f: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Q}$ is a function, $h(z)$ is a power series, $d \geq 1$ and $k \geq 0$ are integers, and

$$
\sum_{n=0}^{\infty} f(n) z^{n}=\frac{h(z)}{\left(1-z^{d}\right)^{k+1}}
$$

(a) Prove that for any $k \geq 0$,

$$
\sum_{n=0}^{\infty} n^{k} z^{n}=\frac{h_{k}(z)}{(1-z)^{k+1}}
$$

for some polynomial $h_{k}(z)$ of degree k.
(b) Prove that if f is eventually quasipoynomial of degree at most k and period d, then h is a polynomial.
(c) Prove that if h is a polynomial, then f is eventually quasipolynomial of degree at most k and period dividing d.
(d) Suppose f is eventually quasipoynomial of degree k and period d, and h is a polynomial. The dissonance point of f is the smallest integer D such that $\left.f\right|_{\geq D}$ is quasipolynomial. Find a relationship between D the degree of h.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Characterize which functions $f: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{C}$ satisfy

$$
\sum_{n \geq 0} f(n) z^{n}=\frac{h(z)}{g(z)}
$$

for some polynomials $h(z)$ and $g(z)$ with coefficients in \mathbb{C}.

