Spring 2020, Math 621: Week 4 Problem Set
 Due: Thursday, February 27th, 2020
 Hilbert Series and Hilbert's Theorem

Discussion problems. The problems below should be worked on in class.
(D1) Hilbert series of monomial ideals.
(a) Find $\operatorname{Hilb}\left(M ; z_{1}, z_{2}\right)$ for each of the finely-graded modules M over $R=\mathbb{k}[x, y]$ below.
(i) $M=I$, where $I=\left\langle x y^{2}\right\rangle$
(ii) $M=I$, where $I=\left\langle x^{3}, x y^{2}, y^{4}\right\rangle$
(iii) $M=R / I$, where $I=\left\langle x^{3}, x y^{2}, y^{4}\right\rangle$
(iv) $M=R / I$, where $I=\left\langle x^{4}, x^{3} y, x^{2} y^{2}, y^{4}\right\rangle$
(b) Find $\operatorname{Hilb}(M ; z)$ for each of the above modules M (under the standard grading).
(c) Conjecture a closed form for $\operatorname{Hilb}\left(R / I ; z_{1}, z_{2}\right)$, where

$$
I=\left\langle x^{a_{1}} y^{b_{1}}, \ldots, x^{a_{k}} y^{b_{k}}\right\rangle \subset R=\mathbb{k}[x, y]
$$

is a monomial ideal with $a_{1}>\cdots>a_{k}$ and $b_{1}<\cdots<b_{k}$.
(d) Locate a monomial ideal $I \subset \mathbb{k}[x, y]$ for which, under the standard grading,

$$
\operatorname{Hilb}(I ; z)=\frac{3 z^{5}-z^{6}+z^{7}-2 z^{8}}{(1-z)^{2}}
$$

(e) Find $\operatorname{Hilb}\left(R / I ; z_{1}, z_{2}, z_{3}\right)$, where $I=\left\langle x^{2}, y^{2}, z^{2}, x y z\right\rangle \subset R=\mathbb{k}[x, y, z]$. Hint: draw the staircase diagram (yes, in 3D).
(f) Locate a monomial ideal $I \subset \mathbb{k}\left[x_{1}, x_{2}, x_{3}\right]$ for which, under the standard grading,

$$
\operatorname{Hilb}(I ; z)=\frac{6 z^{2}-8 z^{3}+3 z^{4}}{(1-z)^{3}}
$$

(D2) Computing Hilbert series. Find a rational form for the Hilbert series Hilb $(M ; z)$ of each of the following (standard graded) modules M over $R=\mathbb{k}[x, y]$.
(a) $M=R \oplus R$
(b) $M=R / I$, where $I=\left\langle x^{2}-y^{2}\right\rangle \subset R$
(c) $M=R \oplus(R / I)$, where $I=\left\langle x^{2}+x y+y^{2}\right\rangle \subset R$
(d) $M=R / I \oplus R / J$, where $I=\left\langle x^{3}-x^{2} y, x y-y^{2}\right\rangle$ and $J=I+\left\langle x^{4}\right\rangle$

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Locate a single graded ring R and R-modules M_{1}, M_{2}, and M_{3} with the Hilbert series specified below.
(a) $\operatorname{Hilb}\left(M_{1} ; z\right)=\frac{1}{\left(1-z^{3}\right)\left(1-z^{5}\right)}$
(b) $\operatorname{Hilb}\left(M_{2} ; z\right)=\frac{z^{5}+3 z^{7}}{\left(1-z^{2}\right)\left(1-z^{3}\right)^{2}}$
(c) $\operatorname{Hilb}\left(M_{3} ; z\right)=\frac{2 z^{5}-z^{7}}{\left(1-z^{2}\right)\left(1-z^{3}\right)}$
(H2) The Hilbert series of a numerical semigroup $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle \subset \mathbb{Z}_{\geq 0}$ is

$$
\operatorname{Hilb}(S ; z)=\sum_{a \in S} z^{a}
$$

(a) Prove using Hilbert's Theorem that

$$
\operatorname{Hilb}(S ; z)=\frac{g(z)}{\left(1-z^{n_{1}}\right) \cdots\left(1-z^{n_{k}}\right)}
$$

for some polynomial $g(z)$.
(b) Fix $m \in S$. Prove that

$$
\operatorname{Hilb}(S ; z)=\frac{a(z)}{1-z^{m}}
$$

for some polynomial $a(z)$ with positive integer coefficients.
(H3) Determine whether each of the following statements is true or false. Prove your assertions.
(a) If $I \subset R=\mathbb{k}\left[x_{1}, \ldots, x_{k}\right]$ is a monomial ideal, and we write

$$
\operatorname{Hilb}\left(R / I ; z_{1}, \ldots, z_{k}\right)=\frac{h\left(z_{1}, \ldots, z_{k}\right)}{\left(1-z_{1}\right) \cdots\left(1-z_{k}\right)} \quad \text { and } \quad \operatorname{Hilb}(R / I ; z)=\frac{g(z)}{(1-z)^{k}}
$$

with respect to the fine grading and the standard grading, respectively, then h and g have the same number of nonzero terms.
(b) There exists a monomial ideal $I \subset \mathbb{k}\left[x_{1}, x_{2}, x_{3}\right]$ such that, under the standard grading,

$$
\operatorname{Hilb}(I ; z)=\frac{3 z^{6}-4 z^{9}+z^{11}}{(1-z)^{3}}
$$

