Spring 2020, Math 621: Week 5 Problem Set
 Due: Thursday, March 5th, 2020
 Hilbert's Theorem and Quasipolynomials

Discussion problems. The problems below should be worked on in class.
(D1) Staircase diagrams of modules. Let $R=\mathbb{k}[x, y]$, under the standard grading.
(a) Draw the staircase diagram of the ideal $I=\left\langle x^{2} y-x y^{2}, x^{3}, y^{3}\right\rangle$ (I recommend using one color for the "monomial staircase" and another for the "binomial edges" below it).
(b) Find $\operatorname{Hilb}(R / I ; z)$ from the previous part.
(c) Draw the staircase diagram of $J=\left\langle x^{2}-y^{2}, x^{5}-y^{3}\right\rangle$, and use it to find $\operatorname{dim}_{\mathbb{k}} R / J$. Does it make sense to find the Hilbert series of R / J ?
(d) Let $I=\left\langle x^{2}, y^{2}\right\rangle$ and $J=\left\langle x-y, x^{2}\right\rangle$, and let $M=(R / I) \oplus(R / J)$. Find $\operatorname{dim}_{\mathbb{k}} M$. Is there a "staircase diagram for M " that helps with this?
(e) Let $N=\left\langle x^{2} e_{1}, y^{2} e_{1},(x-y) e_{2}, x^{2} e_{2}\right\rangle \subset R^{2}$, and let $M=R^{2} / N$. Find $\operatorname{dim}_{\mathbb{k}} M$. (here, $e_{1}=(1,0)$ and $e_{2}=(0,1)$ are the standard basis of R^{2})
(f) Let $N=\left\langle(x-y) e_{1},(x-y) e_{2}, x e_{1}-y e_{2}\right\rangle \subset R^{2}$, and let $M=R^{2} / N$. Find $\operatorname{Hilb}(M ; z)$. Hint: can you find a drawing that faithfully encodes this information?
(D2) Computing Hilbert series. Find a rational expression for the Hilbert series $\operatorname{Hilb}(M ; z)$ of each of the following graded modules M over $R=\mathbb{k}[x, y]$ (under the standard grading). Additionally, find $\operatorname{dim} M$ and use it to ensure you have the "smallest" denominator possible.
(a) $M=R / I$, where $I=\left\langle x^{3}-x y^{2}\right\rangle \subset R$
(b) $M=R \oplus(R / I)$, where $I=\left\langle x^{2}+x y+y^{2}\right\rangle \subset R$
(c) $M=(R / I) \oplus(R / J)$, where $I=\left\langle x^{3}-x^{2} y, x y-y^{2}\right\rangle$ and $J=I+\left\langle x^{4}\right\rangle$
(d) $M=R^{2} / N$, where $N=\left\langle x^{2} e_{1}-x y e_{1}, x y e_{2}-y^{2} e_{2}\right\rangle \subset R^{2}$
(e) $M=R^{2} / N$, where $N=\left\langle x^{2} e_{1}-x y e_{2}, x y e_{1}-y^{2} e_{2}\right\rangle \subset R^{2}$
(f) $M=R^{2} / N$, where $N=\langle m\rangle$ for some $m \in R^{2}$ with $\operatorname{deg}(m)=17$

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Given an R-module M and an element $m \in M$, we define the annihilator of m as

$$
\operatorname{ann}(m)=\{r \in R: r m=0\}
$$

Let $R=\mathbb{k}[x, y]$ and $M=R / I$, where $I=\left\langle x^{2} y-x y^{2}, x^{3}, y^{3}\right\rangle$. Find the set $N \subset M$ of all elements $m \in M$ for which $\operatorname{ann}(m)=\langle x, y\rangle$. What kind of object is N ? A \mathbb{k}-vector space? A submodule of M ?
(H2) Let $R=\mathbb{k}[x, y]$ under the standard grading, and fix a submodule $N=\left\langle m_{1}, m_{2}\right\rangle \subset R^{2}$ such that $\operatorname{deg}\left(m_{1}\right)=17$ and $\operatorname{deg}\left(m_{2}\right)=11$. Hilbert's theorem ensures

$$
\operatorname{Hilb}\left(R^{2} / N ; z\right)=\frac{h(z)}{(1-z)^{2}}
$$

for some polynomial $h(z)$. Find all possible $h(z)$.
(H3) Fix a monomial ideal $I \subset \mathbb{k}\left[x_{1}, \ldots, x_{k}\right]$, and write

$$
\operatorname{Hilb}(I ; z)=\frac{h(z)}{(1-z)^{k}}
$$

as in Hilbert's Theorem (under the standard grading). Find a formula for $h(1)$.
(H4) Fix a monomial ideal $I=\left\langle x^{m_{1}}, \ldots, x^{m_{r}}\right\rangle \subset \mathbb{k}\left[x_{1}, \ldots, x_{k}\right]$. Characterize $\operatorname{dim}(R / I)$ in terms of the exponent vectors m_{1}, \ldots, m_{r}.
(H5) Determine whether each of the following statements is true or false. Prove your assertions.
(a) If $R=\mathbb{k}[x, y, z]$ is \mathbb{Z}-graded and M is a graded R-module such that for $t \gg 0$,

$$
\mathcal{H}(M ; t)=f(t)
$$

for some quasilinear function $f(t)$, then $f(t)$ must have constant leading coefficient.
(b) If $R=\mathbb{k}[x, y, z]$ is \mathbb{Z}-graded and M is a graded R-module such that for $t \gg 0$,

$$
\mathcal{H}(M ; t)=f(t)
$$

for some quasilinear function $f(t)$ with constant leading coefficent c, then it is possible for c to be any positive rational number.

