Spring 2020, Math 621: Week 5 Problem Set Due: Thursday, March 5th, 2020 Hilbert's Theorem and Quasipolynomials

Discussion problems. The problems below should be worked on in class.

- (D1) Staircase diagrams of modules. Let $R = \mathbb{k}[x, y]$, under the standard grading.
 - (a) Draw the staircase diagram of the ideal $I = \langle x^2y xy^2, x^3, y^3 \rangle$ (I recommend using one color for the "monomial staircase" and another for the "binomial edges" below it).
 - (b) Find Hilb(R/I; z) from the previous part.
 - (c) Draw the staircase diagram of $J = \langle x^2 y^2, x^5 y^3 \rangle$, and use it to find $\dim_{\mathbb{R}} R/J$. Does it make sense to find the Hilbert series of R/J?
 - (d) Let $I = \langle x^2, y^2 \rangle$ and $J = \langle x y, x^2 \rangle$, and let $M = (R/I) \oplus (R/J)$. Find $\dim_{\mathbb{K}} M$. Is there a "staircase diagram for M" that helps with this?
 - (e) Let $N = \langle x^2 e_1, y^2 e_1, (x y) e_2, x^2 e_2 \rangle \subset R^2$, and let $M = R^2/N$. Find $\dim_{\mathbb{R}} M$. (here, $e_1 = (1,0)$ and $e_2 = (0,1)$ are the standard basis of R^2)
 - (f) Let $N = \langle (x-y)e_1, (x-y)e_2, xe_1 ye_2 \rangle \subset \mathbb{R}^2$, and let $M = \mathbb{R}^2/N$. Find Hilb(M; z). Hint: can you find a drawing that faithfully encodes this information?
- (D2) Computing Hilbert series. Find a rational expression for the Hilbert series $\operatorname{Hilb}(M;z)$ of each of the following graded modules M over $R = \mathbb{k}[x,y]$ (under the standard grading). Additionally, find dim M and use it to ensure you have the "smallest" denominator possible.
 - (a) M = R/I, where $I = \langle x^3 xy^2 \rangle \subset R$
 - (b) $M = R \oplus (R/I)$, where $I = \langle x^2 + xy + y^2 \rangle \subset R$
 - (c) $M = (R/I) \oplus (R/J)$, where $I = \langle x^3 x^2y, xy y^2 \rangle$ and $J = I + \langle x^4 \rangle$
 - (d) $M = R^2/N$, where $N = \langle x^2 e_1 xy e_1, xy e_2 y^2 e_2 \rangle \subset R^2$
 - (e) $M = R^2/N$, where $N = \langle x^2 e_1 xy e_2, xy e_1 y^2 e_2 \rangle \subset R^2$
 - (f) $M = R^2/N$, where $N = \langle m \rangle$ for some $m \in R^2$ with $\deg(m) = 17$

Homework problems. You must submit *all* homework problems in order to receive full credit.

(H1) Given an R-module M and an element $m \in M$, we define the annihilator of m as

$$ann(m) = \{r \in R : rm = 0\}.$$

Let $R = \mathbb{k}[x,y]$ and M = R/I, where $I = \langle x^2y - xy^2, x^3, y^3 \rangle$. Find the set $N \subset M$ of all elements $m \in M$ for which $\operatorname{ann}(m) = \langle x, y \rangle$. What kind of object is N? A \mathbb{k} -vector space? A submodule of M?

(H2) Let $R = \mathbb{k}[x, y]$ under the standard grading, and fix a submodule $N = \langle m_1, m_2 \rangle \subset R^2$ such that $\deg(m_1) = 17$ and $\deg(m_2) = 11$. Hilbert's theorem ensures

$$\text{Hilb}(R^2/N; z) = \frac{h(z)}{(1-z)^2}$$

for some polynomial h(z). Find all possible h(z).

(H3) Fix a monomial ideal $I \subset \mathbb{k}[x_1, \dots, x_k]$, and write

$$\operatorname{Hilb}(I;z) = \frac{h(z)}{(1-z)^k}$$

as in Hilbert's Theorem (under the standard grading). Find a formula for h(1).

- (H4) Fix a monomial ideal $I = \langle x^{m_1}, \dots, x^{m_r} \rangle \subset \mathbb{k}[x_1, \dots, x_k]$. Characterize $\dim(R/I)$ in terms of the exponent vectors m_1, \dots, m_r .
- (H5) Determine whether each of the following statements is true or false. Prove your assertions.
 - (a) If $R = \mathbb{k}[x, y, z]$ is \mathbb{Z} -graded and M is a graded R-module such that for $t \gg 0$,

$$\mathcal{H}(M;t) = f(t)$$

for some quasilinear function f(t), then f(t) must have constant leading coefficient.

(b) If $R = \mathbb{k}[x, y, z]$ is \mathbb{Z} -graded and M is a graded R-module such that for $t \gg 0$,

$$\mathcal{H}(M;t) = f(t)$$

for some quasilinear function f(t) with constant leading coefficient c, then it is possible for c to be any positive rational number.