Spring 2020, Math 621: Week 6 Problem Set
 Due: Thursday, March 12th, 2020
 Polytopes and Polyhedra

Discussion problems. The problems below should be worked on in class.
(D1) Warmup. Consider the following polytope.

$$
P=\operatorname{conv}\{(1,0,0),(0,1,0),(-1,-1,0),(0,0,1),(0,0,-1)\}
$$

(a) Draw P (as best you can).
(b) Find a matrix A so that the system of inequalities $A x \leq \overrightarrow{1}$ completely describe $x \in P$. Is your matrix A unique?
(c) Draw the face lattice of P.
(D2) Proving things about polytopes. The goal of this problem is to get a feeling for how to write rigorous proofs involving polytopes.
(a) Draw the cubes $C_{2} \subset \mathbb{R}^{2}$ and $C_{3} \subset \mathbb{R}^{3}$. Label the vertices in each drawing.
(b) Formulate a conjecture on when two vertices v_{1} and v_{2} of the d-dimensional cube C_{d} are connected by an edge.
The goal of the remainder of this problem is to prove your conjecture. Be thorough and rigorous in your arguments. Use C_{2} and C_{3} as a starting place.
(c) For each edge e connecting vertices v_{1} and v_{2} of C_{d}, find an equation of a hyperplane H (which should have the form $a_{1} x_{1}+\cdots+a_{d} x_{d}=b$ for some $a_{1}, \ldots, a_{d}, b \in \mathbb{Q}$) so that (i) the only vertices H contains are v_{1} and v_{2}, and (ii) the remaining vertices of C_{d} lie on the same side of H. This ensures H is "just touching the polytope" at e.
Hint: be systematic, and use symmetry to your advantage!
(d) For two points $x, y \in \mathbb{R}^{d}$, let

$$
\overline{x y}=\{t x+(1-t) y: 0 \leq t \leq 1\}
$$

denote the line segment connecting x and y. For each pair of vertices v_{1} and v_{2} not connected by an edge, locate two points w_{1} and w_{2} in C_{d} not in $\overline{v_{1} v_{2}}$ for which $\overline{w_{1} w_{2}} \cap \overline{v_{1} v_{2}}$ is nonempty. Briefly explain why this proves $\overline{v_{1} v_{2}}$ is not an edge.
Hint: it is possible to choose each w_{1} and w_{2} to also be vertices of C_{d} (this is special to the cube and is not true in general).
(e) Locate an example illustrating the caveat of the hint in the previous part.
(f) Locate a hyperplane demonstrating each vertex of C_{d} is indeed a vertex.
(g) How might you prove that there are no other vertices?

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Consider the polytope

$$
P=\operatorname{conv}\{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,1,0)\}
$$

which is a cube with 2 adjacent vertices removed.
(a) Draw P (as best you can).
(b) Find the H-description of P.
(c) Draw the face lattice of P.
(H2) Prove, from first principles, that conv $\{0,1\}^{d}=[0,1]^{d}$.
(H3) Prove that any two vertices of the d-simplex $S_{d}=\operatorname{conv}\left\{0, e_{1}, \ldots, e_{d}\right\}$ share an edge.
(H4) The permutohedron is the polytope P_{n} whose vertices consist of all possible orderings of the coordinates of $(1,2, \ldots, n)$. For example,

$$
P_{3}=\{(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)\} .
$$

Prove that $\operatorname{dim} P_{n}=n-1$.
Hint: to prove $\operatorname{dim} P_{n} \leq n-1$, find an affine hyperplane that contains P_{n}. To prove $\operatorname{dim} P_{n} \geq n-1$, locate $n-1$ linearly independent vectors of the form $v-w$ for $v, w \in P_{n}$.
(H5) Determine whether each of the following statements is true or false. Prove your assertions.
(a) Among polytopes with f-vector $(1, V, E, F, 1)$, the value $F-V$ can be arbitrarily large.
(b) The subsets $P_{1}=[0,1]$ and $P_{2}=(0,1)$ of \mathbb{R} are both 1-dimensional polytopes.

Announcement. For those who are want to avoid drawing polytopes by hand, there is a free (web-based) program you can use, developed by Nils Olsson (an SDSU student from Math 596).

```
https://nilsso.github.io/pages/math/semi-comb/polytope.html
```

