Spring 2020, Math 621: Week 8 Problem Set
Due: Friday, March 27th, 2020
Applications to Enumerative Combinatorics

Discussion problems. The problems below should be worked on in groups, but will not
be submitted for credit. Only submit the homework problems at the end of this document.
The content included covers enough material to complete the assigned problems, but if you are
interested in further reading, I suggest Chapter 1 of Combinatorial Reciprocity Theorems by
Matthias Beck and Raman Sanyal (freely available from the first author’s webpage).

This week, we will be examining an application of polytopes and Ehrhart’s theorem to com-
binatorial objects called posets. First, the obligatory (and less useful) technical definition: a
partially ordered set (or poset) is a set I with a partial order < that is reflexive, antisymmetric,
and transitive (here, “partial” means that some elements p,q € II are incomparable, in that
neither p < ¢ nor ¢ < p).

Having stated the technical definition, note that this is not the best way to think of a poset!
For all of our posets, IT = {p1, ..., pq} will be finite, and the easiest way to specify/think about a
finite poset is with its Hasse diagram, wherein each point is an element of II, and two elements p;
and p; lie “above” each other whenever p; < p;. Below are several examples of Hasse diagrams,
and the posets they define will be used frequently through the rest of this sheet.

Pa Ps Ps Pg
P3 P4 Ds
P2 P4 P2 @) P4 s s
P1 P2 Ps3 P1 P Y20
1I; II, I3 1y

Some notes and useful terminology.

e We use < (as opposed to <) for a partial order since reflexivity is required (each p; < p;).
When we write p; < p;, we mean that p; < p; and p; # p;.

o If p; < p; and there are no elements strictly between p; and p;, we say p; covers p;, and
refer to this as a cover relation.

e In the Hasse diagram, we only draw edges for cover relations. For example, in the poset 115,
we have p; < p3 since p; = p2 < p3 in the diagram, even though there is no edge directly
between p; and ps. (Which poset axiom ensures we can conclude this?)

e We say I is linear if it happens to be a total ordering (i.e., no elements are incomparable).
A linear extension of a poset II is a linear poset (II', <’) obtained from II by including
additional relations. For example, p; <’ p» <’ p3 =’ ps and ps =’ p; =’ p3 =’ ps are both
linear extensions of IT;. (What does the Hasse diagram of a linear poset look like?)

We are now ready to bring polytopes into the mix. Given a poset (II, <) = {p1,...,pa}, the
order polytope of II, denoted O(II), is defined by

oM) = {(a1,...,aq) ER*:0<a; <1fori=1,...,d, and a; < a; whenever p; < p;}.

In particular, the points in O(IT) have coordinates indexed by the elements of I, and the relations
in II determine the hyperplanes bounding O(II).

(D1) H-descriptions of order polytopes. The goal of this problem is to “prune” the inequalities
in the definition of O(II) above, keeping only the ones that actually bound facets, by
eliminating any inequalities that are implied by others.



(a) Write down all 13 relations in the poset Il above.
(b) Write down all 11 inequalities in the definition of O(II) for the poset II; above.

(¢) Determine the H-description of O(II), that is, the irredundant list of facet inequalities.
Your answer will depend on the Hasse diagram of II.

Hint: the posets 1y, I15, II3, and 114 have 7, 7, 8, and 10 facets, respectively.
(D2) Faces of order polytopes. Fix a poset (II, <) = {p1,...,pa}-
(a) Determine for which II the order polytope O(II) is a simplex (that is, when O(II) has

exactly d + 1 facets, or (equivalently) exactly d 4+ 1 vertices).

(b) Prove that dim O(II) = d. Recall that do to this, we must find d linearly independent
vectors of the form z — y with z,y € O(II).

Given a poset (II, <), a function f: I — {1,...,n} is (weakly) order-preserving if

p=gq implies f(p) < flq) for all p,q € 1L

Let Qp(n) denote the number of order preserving functions IT — {1,...,n}. For example, the
function f:1Is — {1,...,8} given by

flp1) =1, f(p2)=4, f(ps)=6, f(pa)=3, and  f(ps) =6

is order preserving, but if we change f(p3) = 2, the resulting function would not be order
preserving since pa < ps but f(p2) > f(ps).

(D3) Ehrhart functions of order polytopes. The goal of this problem is to prove that for any
finite poset (I, <) = {p1,...,pa}, the function Qq(n) is a polynomial in n of degree d.

(a) Find Q1(2) for the posets II; and IIz by listing all order preserving functions to {1, 2}.
(b) Find all points in O(II) N {0, 1} for I = II; and IT = II,. What do you notice?
c¢) Find a relationship between Ly (n) an n(n), and prove your claim by writin,
Find lationship b Lo d Q d laim b iting
down an explcit bijection. What does Ehrhart’s theorem then tell you about Qr(n)?

(d) Give a combinatorial interpretation of L%(H)(n) (that is, characterize which order
preserving functions correspond to interior points under your bijection). Apply Ehrhart
reciprocity to obtain another theorem.

(e) What surprising relationship does this imply between the number of weakly order
preserving functions on II and the number of strictly order preserving functions on II?



Homework problems. You must submit all homework problems in order to receive full credit.

(H1) Determine a complete list of 3-element posets (there are 5 distinct Hasse diagrams, and
only one poset for each is required).

(H2) Fix a poset (I, <) = {p1,...,pa}-

(a) Prove the vertices of O(II) lie in {0, 1}.
Hint: for each point x € O(I1)\{0, 1}¢, locate a tiny line segment L with z € L C O(II).
Why does this imply = cannot be a vertex?

(b) As a consequence of the previous part, the vertices of O(II) are precisely the 01-
vectors that satisfy the inequalties defining O(II). One interpretation of this is we
can associate to each vertex v of O(II) a particular subset of II (for example, a vertex
v =1(1,0,0,1,0,1) corresponds to the set {p1, ps, ps} C II). Characterize which subsets
of IT coorespond to vertices of O(II) in terms of the Hasse diagram of II.

(H3) Recall that a triangulation of a polytope P is an expression of P as a union of simplices
whose pairwise intersections are faces. Prove that any order polytope has a triangulation
consisting of order polytopes.

(H4) Read, digest, and transcribe the direct (i.e., polytope-free) proof in Proposition 1.3.1 of
Combinatorial Reciprocity Theorems by Beck and Sanyal (this requires filling in some gaps).

Challenge problems. Challenge problems are not required for submission, but bonus points
will be awarded for submitting a partial attempt or a complete solution.

(C1) Given a poset II, characterize the edges of the order polytope O(II).



