
Spring 2020, Math 621: Week 9 Problem Set
Due: Friday, April 10th, 2020

Gröbner Bases

Warmup and Discussion problems. The problems below should be worked on in groups,
but will not be submitted for credit. Only submit the homework problems at the end of this
document. Try to read up through the start of the first discussion problem, and complete
the warmup problems, prior to starting with your group. The content included covers enough
material to complete the assigned problems, but if you are interested in further reading, I suggest
Chapter 2 of Ideals, Varieties, and Algorithms by David Cox, John Little, and Donal O’Shea, or
Chapter 15 of Commutative Algebra with a View Toward Algebraic Geometry by David Eisenbud.

As motivation for this week’s content, consider the univariate polynomial ring R = k[x].
We proved last semester that any ideal I ⊂ R is principal, i.e., I = 〈g(x)〉 for some g(x) ∈ I.
We even saw a convenient way to find f(x): the Euclidean algorithm! As a refresher, if

I = 〈x5 + 2x4 − 2x3 − x2 + 3x− 1, x4 + x3 − 2x2 + 3x− 1〉,

then we repeatedly apply the division algorithm to obtain

x5 + 2x4 − 2x3 − x2 + 3x− 1 = (x + 1)(x4 + x3 − 2x2 + 3x− 1) + (−x3 − 2x2 + x)

x4 + x3 − 2x2 + 3x− 1 = (x− 1)(x3 + 2x2 − x) + (x2 + 2x− 1)

x3 + 2x2 − x = (−x)(x2 + 2x− 1) + 0.

At each step above, the remainder lies in I since the other terms in the equality all lie in I,
ensuring g(x) = x2 + 2x− 1 ∈ I. Moreover, by back-substituting, we see g(x) divides both of
the original generators of I. Together, these imply I = 〈g(x)〉.

(W1) Perform the Euclidean algorithm to find the (unique) monic principal generator of the
ideal I = 〈x6 + x4 + x2, x4 + x3 + x〉 ⊂ Q[x].

Now, a lot of algorithmic questions involving polynomial ideals boil down to the following:
given a polynomial f(x) and an ideal I, is f(x) ∈ I? This is known as the ideal membership
problem. For univariate polynomial rings, the above makes this easy: use the Euclicean algorithm
to write I = 〈g(x)〉, then use the division algorithm to check if g(x) | f(x). In particular,
I contains precisely the polynomial multiples of g(x).

For multivariate polynomial rings, the ideal membership problem becomes a lot more difficult.
Not only are some ideals not principle (e.g., 〈x, y〉 ∈ k[x, y]), but even for those that are, the
whole notion of “division algorithm” breaks down (e.g., there is no “natural” choice of remainder
when dividing x2y + 3 by xy2 + 5).

The first hurdle to overcome: how do we choose the leading term of a multivariate polynomial?
For instance, supposing f = xy9 + x2z + xy2 + 4, which should the leading term be? In the end,
this comes down to choosing a monomial ordering. Here are a few reasonable ways to do so.

• Lexicographic (lex) order: given two monomials xa, xb ∈ k[x1, . . . , xk], we set xa ≺ xb if
a1 < b1, or if a1 = b1 and a2 < b2, or if a1 = b1 and a2 = b2 and a3 < b3, and so forth.
This is also known as “dictionary order”, i.e., the standard way to alphabetize words.

Under lex order: f = x2z + xy9 + xy2 + 4, with terms written in descending order.

• Graded lexicographic (glex) order: we set xa ≺ xb if a1 + · · · + ak < b1 + · · · + bk, or if
a1 + · · ·+ ak = b1 + · · ·+ bk and xa preceeds xb under lex order. In particular, we compare
total degrees of xa and xb, and then break ties using lex order.

Under glex order: f = xy9 + x2z + xy2 + 4, with terms written in descending order.
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• Graded reverse lexicographic (grevlex) order: we set xa ≺ xb if a1 + · · ·+ak < b1 + · · ·+ bk,
or if a1 + · · ·+ ak = b1 + · · ·+ bk and ak > bk, or if ak = bk and ak−1 > bk−1, and so on.
Intuitively, after comparing total degrees, under glex smaller variables are more valuable,
while under grevlex larger variables are undesirable.

Under grevlex order: f = xy9 + xy2 + x2z + 4, with terms written in descending order.

In general, a term order is a total ordering ≺ on the set of monomials in R = k[x1, . . . , xk]
(or, equivalently, on the elements of Zk

≥0) such that (i) if xa ≺ xb, then xa+c ≺ xb+c for any

c ∈ Zk
≥0; and (ii) every nonempty set of monomials has a least element under ≺. One can check

that the 3 orderings defined above are indeed term orders. Also, each is defined by making a
sequence of comparisons until a non-tie is reached; this is a common way to define term orders.

Now, once we choose a term order ≺, it at least gives us some (deterministic) way to perform
polynomial long division. As an example, consider dividing

f = x4y2 + xy2 − 2x by g1 = xy3 + x2y − 2 and g2 = x2 − y

under the glex term order ≺. We first order the terms of each polynomial by ≺, as above. We
then check the leading term of each gi one by one until we find one that divides the leading
term of f . Once we do, we scale it appropriately, and subtract to cancel the leading term of f .
From there, we rinse and repeat until we obtain either 0 or a polynomial whose leading term is
not divisible by the leading term of any gi. The full division proceeds as follows.

f : x4y2 + xy2 − 2x
− x4y2 − x2y3 ( = (x2y2)g2 )

x2y3 + xy2 − 2x
− x2y3 + x3y − 2x ( = (x)g1 )

−x3y + xy2

− −x3y + xy2 ( = (−xy)g2 )

0

At the end of the day, we obtain f = (x)g1 + (x2y2− xy)g2 + (0). If we instead use the lex term
order, we obtain the following.

f : x4y2 + xy2 − 2x
− x4y2 + x3y4 − 2x2y ( = (x2y)g1 )

−x3y4 + 2x2y + xy2 − 2x
− −x3y4 − x2y6 + 2xy3 ( = (−xy3)g1 )

x2y6 + 2x2y − 2xy3 + xy2 − 2x
− x2y6 + xy8 − 2y5 ( = (y5)g1 )

2x2y − xy8 − 2xy3 + xy2 − 2x + 2y5

− 2x2y + 2xy3 − 4 ( = (2)g1 )

−xy8 − 4xy3 + xy2 − 2x + 2y5 + 4

Since xy5 is not divisible by x2y nor x3 (the leading terms of g1 and g2 under lex order), we obtain

f = (x2y − xy3 + y5 + 2)g1 + (0)g2 + (−xy8 − 4xy3 + xy2 − 2x + 2y5 + 4).

(W2) Perform polynomial long division with the above polynomials under glex order, but with g2
listed before g1. You should obtain a different remainder.

Remember that the goal is to determine if f ∈ 〈g1, g2〉 by doing polynomial long division
and checking the remainder. As the above examples demonstrate, this is not a reliable method

2



to use, as choosing a different term order (or even a different ordering of the gi) can yield a
different remainder. This is where Gröbner bases come in: if I = 〈g1, . . . , gr〉 and the chosen
generating set g1, . . . , gr is sufficiently nice, then the division algorithm can indeed be used to
reliably determine membership in I.

Fix a term order ≺ on R = k[x1, . . . , xk], and write In≺(f) for the leading term of f .
A generating set G = {g1, . . . , gr} for I is a Gröbner basis with respect to ≺ if every f ∈ I, some
gi ∈ G satisfies In≺(gi) | In≺(f). Notice that this is precisely what is needed to ensure division
of any f ∈ I by G is 0.

(D1) Developing Buchberger’s Algorithm. In this problem, we will explore how to “grow” a given
generating set into a Gröbner basis.

(a) Let I = 〈g1, g2〉 ⊂ k[x, y], where g1 = xy3 + x2y − 2 and g2 = x2 − y. Verify that
dividing f = y4 + xy2 − 2x by G = {g1, g2} has nonzero remainder (should be quick).

(b) Notice that f ∈ I since

f = xg1 − y3g2 = x(xy3 + x2y − 2)− y3(x2 − y).

This highlights the main issue: the leading terms in this expression cancel and the
new leading term is not divisible by the leading terms of g1 and g2. More generally,
if L = lcm(In≺(g), In≺(h)), the polynomial

S(g, h) =
L

In≺(g)
g − L

In≺(h)
h

will (potentially) have this issue (we call this the syzygy or S-polynomial of g and h).
Argue (briefly) that S(g, h) ∈ I whenever g, h ∈ I.

(c) Buchberger’s criterion tells us that syzygies are the only potential obstruction when
assembling a Gröbner basis. Prove the forward direction.

Theorem ((Buchberger’s Criterion)). The set G = {g1, . . . , gr} is a Gröbner basis
under ≺ if and only if every syzygy S(gi, gj) has remainder 0 when divided by G.

(d) Returning to our example, let’s add g3 = S(g1, g2) to the list, so now G = {g1, g2, g3}.
Do any of the polynomials S(gi, gj) yield a nonzero remainder when divided by G?

(e) (Reading only) It turns out that {g1, g2, g3} is indeed a Gröbner basis for I, and the
last part above illustrates the idea behind Buchberger’s algorithm: given a generating
set G = {g1, . . . , gr}, compute all syzygies S(gi, gj) and divide each by G, then throw
any nonzero remainders obtained into G. Continue in this manner until Buchberger’s
criterion is satisfied. This process can be quite long, but always terminates eventually
9we will see the key to proving this next week).

(f) Let J = 〈x3 − y2, x10 − z3〉 ⊂ k[x, y, z]. Use Buchberger’s algorithm to find a Gröbner
basis for J under the glex term order.

(g) Use your Gröbner basis to determine if x11z3 − y14 ∈ J .

It’s worth noting that not all term orders are created equal, as some tend to yield substan-
tially larger Gröbner bases than others. For instance, lex Gröbner bases tend to have a lot
more elements than glex or grevlex Gröbner bases. In fact, most of the “popular” computer
algebra implementations of Buchberger’s algorithm default to grevlex order, since this tends to
have particularly small Gröbner bases (though, strangely enough, no one has been able to prove
this is the case; it has just been widely observed for “most” ideals).
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Homework problems. You must submit all homework problems in order to receive full credit.

(H1) Use Buchberger’s algorithm to obtain the reduced Gröbner basis for

I = 〈x3 − wy2, x10 − w7z3〉 ⊂ k[x, y, z, w]

under the grevlex term order.

(H2) Fix an m × k matrix M with row vectors w1, . . . , wm ∈ Zk
≥0. Define an order ≺M on

R = k[x1, . . . , xk] so that xa ≺M xb whenever one of the following holds:

• if a · w1 < b · w1;

• if a · w1 = b · w1 but a · w2 < b · w2;

• if a · w1 = b · w1 and a · w2 = b · w2, but a · w3 < b · w3;
...

• if a · wi = b · wi for all i < m, but a · wm < b · wm.

As an example, if M = I, then ≺M coincides with lex order. Determine for which M the
order ≺M is a term order.

(H3) Fix a term order ≺ on R = k[x1, . . . , xk], and fix nonzero polynomials f, g ∈ R. Prove that
if gcd(In≺(f), In≺(g)) = 1, then dividing S(f, g) by f and g has remainder 0.

(H4) Determine whether each of the following statements is true or false. Prove your assertions.

(a) Under any term order ≺ on k[x1, . . . , xk], for each variable xi there are only finitely
many monomials xa such that xa ≺ xi.

(b) Reverse lexicographic order, defined in the same manner as the grevlex term order
but without the initial “total degree” comparison, is a term order.
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