
Spring 2020, Math 621: Week 11 Problem Set
Due: Friday, April 24th, 2020

Noetherian Rings and the Hilbert Basis Theorem

Warmup and Discussion problems. The problems below should be worked on in groups,
but will not be submitted for credit. Only submit the homework problems at the end of this
document. Try to read up through the start of the first discussion problem, and complete
the warmup problems, prior to starting with your group. The content included covers enough
material to complete the assigned problems, but if you are interested in further reading, I suggest
Chapter 2 of Ideals, Varieties, and Algorithms by David Cox, John Little, and Donal O’Shea,
or Chapter 9 and 12 of Abstract Algebra by David Dummit and Richard Foote.

This week, we will prove the first of the two big theorems of Hilbert, called the Hilbert Basis
Theorem, which states that every ideal I ⊂ k[x1, . . . , xk] is finitely generated. This, together
with the Hilbert Syzygy Theorem (coming soon), implies the “Big Hilbert’s Theorem” from
week 4. Before we see the proof, we will examine the large family of rings with this property.

A commutative ring R is said to be Noetherian if every ideal I ⊂ R is finitely generated.
There are several other equivalent definitions of Noetherian, and our first task this week will be
to prove their equivalence.

Theorem. For any (commutative) ring R, the following are equivalent:

(a) R is Noetherian (that is, every ideal in R is finitely generated);

(b) R satisfies the ascending chain condition (ACC) on ideals (i.e., any chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

eventually stabilizes, meaning for some N we have Ik = Ik+1 for all k ≥ N); and

(c) every nonempty set of ideals of R has a maximal element under containment.

The classic example of a non-Noetherian ring is k[x1, x2, . . .], the polynomial ring in infinitely
many variables. This ring violates all 3 parts of the above theorem: the ideal 〈x1, x2, x3, . . .〉 is
not finitely generated, the ascending chain

〈x1〉 ( 〈x1, x2〉 ( 〈x1, x2, x3〉 ( · · ·

does not eventually stabilize, and the set {Ik : k ≥ 0} of ideals Ik = 〈x1, x2, . . . , xk〉 has no
maximal element under containment. This single example actually encapsulates most of the
ideas in the proof of the above theorem, as we will see in Problem (D1).

(W1) Give a brief argument that Z satisfies the ascending chain condition on ideals.

(D1) Equivalent definitions. In this problem, we will work through a proof of the above theorem.

(a) Play a few rounds of the “ascending chain game”: starting with I1 = 〈x2y3〉 ⊂ k[x, y],
take turns selecting the next ideal in the chain by adding one additional generator
(which may or may not override existing generators). Verify that you eventually get
“trapped” and become unable to add further elements (i.e., that the ascending chain
condition holds). For simplicity, you may restrict your attention to monomial ideals.

(b) Read the following proof that if R has an ideal I that is not finitely generated, then
there exists an ascending chain of ideals that does not stabilize. Prove the converse.
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Proof. Fix f1 ∈ I. Since I is not finitely generated, I ) 〈f1〉, so there exists some
f2 ∈ I \〈f1〉. Likewise, we must have I ) 〈f1, f2〉, so there exists some f3 ∈ I \〈f1, f2〉.
Continuing in this way, we obtain an ascending chain

〈f1〉 ( 〈f1, f2〉 ( 〈f1, f2, f3〉 ( · · ·

that does not stabilize since each ideal contains at least one new element fi.

(c) Prove that if R has some ascending chain of ideals that does not eventually stabilize,
then R also has a set of ideals that does not contain a maximal element.

(d) Complete the proof below that if R has a set of ideals that does not contain a maximal
element, then R also has an ascending chain of ideals that does not eventually stabilize.

Proof. Fix a nonempty set S of ideals, and fix I1 ∈ S. By assumption, I1 is not
maximal under containment among the ideals in S, so there exists I2 ∈ S with I1 ( I2.

(e) Conclude that the theorem holds.

(f) Use the above theorem to prove that if R is Noetherian, then for any infinite list
f1, f2, . . . ∈ R of elements, we have 〈f1, f2, . . .〉 = 〈f1, . . . , fN 〉 for some N (in particu-
lar, any infinite generating set for an ideal I has a finite subset that also generates I).

Note: this is the underlying reason Buchberger’s algorithm terminates.

Noetherian rings can also be characterized in terms of their finitely generated modules. All
parts of the theorem below bear a striking resemblence to the first theorem, and indeed most of
the proofs are near identical. The primary hurdle is proving (a) implies (b), as we must jump
from a condition on ideals to a condition on modules.

Theorem. For any ring R, the following are equivalent.

(a) R is Noetherian (that is, all 3 parts of the above theorem hold);

(b) for every finitely generated R-module M , every submodule M ′ ⊂M is also finitely generated;

(c) for every finitely generated R-module M , every ascending chain

M ′1 ⊆M ′2 ⊆M ′3 ⊆ · · ·

of submodules of M eventually stabilizes; and

(d) for every finitely generated R-module M , every nonempty set of submodules of M has a
maximal element under containment.

Note that the assumption throughout that M is finitely generated is essential, regardless of
whether R is Noetherian. Indeed, the module M =

⊕∞
i=1 R is not finitely generated, as are

numerous submodules therein.

(D2) Modules over Noetherian rings.

(a) Demonstrate that k[x1, x2, . . .] violates all parts of the above theorem.

(b) Adapt the proof form Problem (D1)(b) to prove that (b) implies (c) above.

(c) Adapt the proof form Problem (D1)(e) to prove that (d) implies (c) above.

(d) Give a 1-line proof that (b) implies (a) above.
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(e) All that remains is to show (a) implies (b). Suppose every ideal in R is finitely gener-
ated, and let M = 〈m1, . . . ,mk〉 denote a finitely generated R-module.

(i) Locate a “natural” homomorphism ϕ : Rk →M from the free module Rk to M ,
and argue that any submodule M ′ ⊂ M is finitely generated if and only if its
preimage ϕ−1(M ′) ⊂ Rk is finitely generated. Conclude that it suffices to assume
M = Rk is free and each mi = ei.

(ii) Fix a submodule M ′ ⊂ Rk, and let

I = {a : (a, a2, . . . , ak) ∈M ′ for some a2, . . . , ak ∈ R} ⊂ R.

Prove that I is an ideal of R.

(iii) Prove that

M ′′ = {(0, a2, . . . , ak) ∈M ′ : a2, . . . , ak ∈ R} ⊂ Rk

is a submodule of Rk.

(iv) Argue that M ′′ is isomorphic to a submodule of the free module Rk−1, and that
by induction on k, we can assume M ′′ is finitely generated.

(v) Write I = 〈b1, . . . , br〉 for some b1, . . . , br ∈ R (why can we do this?), and fix a
list of elements m′1, . . . ,m

′
r ∈ M ′ with first coordinates b1, . . . , br, respectively.

Additionally, write M ′′ = 〈m′′1 , . . . ,m′′t 〉 for some elements m′′1 , . . . ,m
′′
t ∈ M .

Prove that M ′ = 〈m′1, . . . ,m′r,m′′1 , . . . ,m′′t 〉.

(D3) The Hilbert Basis Theorem. We are now ready to prove the Hilbert Basis Theorem. We will
first prove the following stronger result (which is sometimes given the same name).

Theorem. If R is Noetherian, then R[x] is Noetherian.

(a) Fix an ideal I ⊂ R[x]. Let L ⊂ R denote the set of leading coefficients of elements
of I. Argue that L is an ideal (convention: the 0 polynomial has leading coefficient 0).

(b) Let Ld ⊂ R denote the set of leading coefficients of elements of I with degree at most d.
Generalize your argument from the previous part to prove that Ld is an ideal.

(c) Argue that for some N , we have Ld = L for all d ≥ N .

(d) Let a1, . . . , ar denote a (finite) generating set for L, and fix polynomials f1, . . . , fr ∈ I,
each of degree at most N , with leading coefficients a1, . . . , ar, respectively. Prove that
〈f1, . . . , fr〉 contains every element of I of degree at least N .

Hint: suppose f ∈ I \ 〈f1, . . . , fr〉 has minimal degree, and obtain a contradiction.

(e) Fix a degree d ≤ N . Locate a list of polynomials g1, . . . , gt ∈ I such that 〈g1, . . . , gt〉
contains every element of I of degree d.

(f) Conclude that I has a finite generating set.

(g) Give a brief inductive proof of the Hilbert Basis Theorem.

Theorem (Hilbert Basis Theorem). Every ideal I ⊂ k[x1, . . . , xk] is finitely generated.

We close with a brief historical tangent. Noetherian rings are named after Emmy Noether for
her foundational contributions to commutative algebra. Prior to her work, numerous results on
primary decomposition (like prime factorization, but for ideals) were obtained for small classes
of rings, and often involved long, tedious, and specialized arguments. Emmy Noether identified
the ascending chain condition as the core feature, and in doing so (i) simlutaneously extending
their results to a single, much larger class of rings (i.e., Noetherian rings), and (ii) provided
substantially shorter and cleaner arguments.
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Homework problems. You must submit all homework problems in order to receive full credit.

(H1) An ideal I ⊂ R is irreducible if I = I1 ∩ I2 implies I = I1 or I = I2.

(a) Prove that any prime ideal is irreducible.

(b) Prove that if R is Noetherian, then every ideal I ⊂ R can be written as an inter-
section of finitely many irreducible ideals (such an expression is called an irreducible
decomposition of I).

(H2) Let R = k[x1, . . . , xk], and let I = 〈xa1 , . . . , xar 〉 ⊂ R denote a monomial ideal.

(a) Characterize when I is irreducible in terms of the exponent vectors a1, . . . , ar.

(b) Find an irreducible decomposition of

I = 〈x4, y4, z4, xy2z3, x3yz2, x2y3z〉 ⊂ k[x, y, z].

(H3) Finish any remaining parts of the proof of the Hilbert Basis Theorem from Problem (D3)
that your group did not complete in class. Once you have completed this, it suffices to
write “DONE” as your answer.

(H4) Determine whether each of the following statements is true or false. Prove your assertions.

(a) If R is a Noetherian ring and I is an ideal, then R/I is Noetherian.

(b) If R is a ring, I ⊂ R is an ideal, and R/I is Noetherian, then R is Noetherian.

(c) Every ideal can be written as an intersection of finitely many prime ideals.

(d) Any Noetherian ring R also satisfies the descending chain condition (DCC) on ideals
(that is, any descending chain

I1 ⊇ I2 ⊇ I3 ⊇ · · ·

of ideals eventually stabilizes).
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