
Spring 2020, Math 621: Week 12 Problem Set
Due: Monday, May 4th, 2020

Free Resultions and the Hilbert Syzygy Theorem

Warmup and Discussion problems. The problems below should be worked on in groups,
but will not be submitted for credit. Only submit the homework problems at the end of this
document. Try to read up through the start of the first discussion problem, and complete
the warmup problems, prior to starting with your group. The content included covers enough
material to complete the assigned problems, but if you are interested in further reading, I suggest
Chapter 6 of Using Algebraic Geometry by David Cox, John Little, and Donal O’Shea, or
Chapter 1 of Combinatorial Commutative Algebra by Ezra Miller and Bernd Sturmfels.

To date, we have used the words “generators” and “relations” quite a bit in passing while
working through the material so far. We have a pretty good understanding of the former (and
its precise meaning in different contexts); we have also developed a philosophical idea/intuition
for the latter, though words like “minimal relation” we have avoided defining rigorously. This
week, we begin our study of free resolutions, which are the formal mathematical objects that
encapsulate relations-related information about the generators of a given module.

We begin with some formal definitions. A sequence of R-modules and homomorphisms

· · · ϕi−2−−−→Mi−1
ϕi−1−−−→Mi

ϕi−→Mi+1
ϕi+1−−−→ · · ·

is said to be exact if for each i, we have kerϕi = Imϕi−1 (i.e., the kernel of the map leaving Mi

equals the image of the map coming into Mi). A free resolution of an R-module M is an exact
sequence of the form

0←−M ←− F0 ←− F1 ←− · · ·

wherein each module Fi is free. If there are only finitely many nonzero Fi in the sequence, as in

0←−M ←− F0 ←− F1 ←− · · · ←− F` ←− 0,

we say the length of the resolution is `.
This “abstract nonsense” is best illustrated with some concrete examples. Let’s first consider

I = 〈x4y, x2y2, xy3〉 ⊂ R = k[x, y].

A free resolution for I can be constructed in one homological degree at a time. Starting with
0← I, whose kernel is all of I, we choose F0 = R3 and send each basis vector of F0 to a generator
of I under ϕ0, ensuring Imϕ0 = I. This yields

0←− I

x4y ←− [ e1
x2y2 ←− [ e2
xy3 ←− [ e3
←−−−−−−−−− R3

so far. From there, we see kerϕ0 must be generated by differences of monomials, since ϕ0 sends
monomials to monomials. The only minimal such elements are ye1−x2e2 and ye2−xe3, meaning

kerϕ0 = 〈ye1 − x2e2, ye2 − xe3〉.

As such, we choose F1 = R2 and define ϕ1 to send e1 and e2 to these elements of F0, obtaining

0←− I

x4y ←− [ e1
x2y2 ←− [ e2
xy3 ←− [ e3
←−−−−−−−−− R3

(ye1 − x2e2)←− [ e1
(ye2 − xe3)←− [ e2
←−−−−−−−−−−−−−−− R2.
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Lastly, we see that kerϕ1 = 0, so we are ready to complete the resolution.

0←− I

x4y ←− [ e1
x2y2 ←− [ e2
xy3 ←− [ e3
←−−−−−−−−− R3

(ye1 − x2e2)←− [ e1
(ye2 − xe3)←− [ e2
←−−−−−−−−−−−−−−− R2 ←− 0

The maps in this series are more concise to write as matrices, as in

0←− I
[
x4y x2y2 xy3

]
←−−−−−−−−−−−−−− R3


y 0
−x2 y

0 −x


←−−−−−−−−− R2 ←− 0.

This illustrates an advantage of writing the maps in a free resolution right-to-left: if we write the
elements of the free modules as column vectors, then we can use standard matrix multiplication.
The same goes for composition of sequential maps (which should always be 0, due to exactness).

It is important to note that this is not the only free resolution for I. Indeed, suppose we had
observed that y2e1 − x3e3 ∈ kerϕ0, without noticing that

y2e1 − x3e3 = y(ye1 − x2e2) + x2(ye2 − xe3)

made it redundant as a generator for kerϕ0, and chosen F1 = R3 with ϕ1(e3) = y2e1 − x3e3.
This would instead yield the partial resolution

0←− I
[
x4y x2y2 xy3

]
←−−−−−−−−−−−−−− R3


y 0 y2

−x2 y 0
0 −x −x3


←−−−−−−−−−−−−−− R3

and now kerϕ1 6= 0 since ϕ1(e3) = ϕ1(ye1 + x2e2). As such, the free resolution

0←− I
[
x4y x2y2 xy3

]
←−−−−−−−−−−−−−− R3


y 0 y2

−x2 y 0
0 −x −x3


←−−−−−−−−−−−−−− R3


y
x2

−1


←−−−−− R←− 0.

is obtained. Though both free resolutions are perfectly valid, the second resolution highlights
another important fact: some free resolutions are “smaller” than others. We will make this
notion precise in Problem (D2) this week.

As a second example, consider

J = 〈x3 − y2, x4y4 − z3〉 ⊂ R = k[x, y, z].

We obtain the free resolution

0←− R/J ←− R
[
x3 − y2 x4y4 − z3

]
←−−−−−−−−−−−−−−−− R2

x4y4 − z3
y2 − x3


←−−−−−−−−− R←− 0.

for R/J . Unlike the first example, some matrix entries are not monomials. We will see that this
stems from the grading on the module being resolved (indeed, I is a monomial ideal and thus
finely graded, and while the entries of the matrices in the resolution for J are not monomial,
they are homogeneous under the McNugget grading on J).

(W1) Use matrix multiplication to verify that the image of each map in the free resolutions
above is contained in the kernel of the next map.
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(D1) Existence of free resolutions. Throughout this problem, unless otherwise stated, R is any
ring, and modules over R need not be finitely generated.

(a) Argue that the sequence 0→M
ϕ−→ N is exact if and only if ϕ is injective. State and

prove analogous results concerning (i) an exact sequence M
ϕ−→ N → 0, and (ii) an

exact sequence 0→M
ϕ−→ N → 0.

(b) A short exact sequence is an exact sequence of the form

0→ K →M
ϕ−→ N → 0.

Prove that K ∼= kerϕ and N ∼= M/ kerϕ in any such sequence.

(c) Given below is a proof that for any ring R, any R-module M has a free resolution.
Prove that if R is Noetherian and M is a finitely generated R-module, then we can
pick the free modules Fi to have finite rank.

Proof. Pick any generating set G ⊂ M for M (at worst, we could choose G = M).

Let F0 =
⊕

g∈GR, and begin the free resolution for M with 0←M
ϕ0←− F0 using the

surjective homomorphism ϕ0 : F0 → M defined by sending eg 7→ g for each g ∈ G.
Inductively, suppose

0←M
ϕ0←− F0

ϕ1←− · · · ϕj←− Fj

is exact. As before, choose a generating set G for kerϕj ⊂ Fj , let Fj+1 =
⊕

g∈GR,
and define ϕj+1 : Fj+1 → Fj by eg 7→ g for each g ∈ G. This yields a free resolution

0←M
ϕ0←− F0

ϕ1←− F1
ϕ2←− · · ·

as desired.

(d) Suppose R = k[x, y]/〈xy〉 and M = R/〈x〉. Find a free resolution for M .

(e) Suppose R = k[x, y, z], I = 〈x, y, z〉, and M = R/I. Find a free resolution for M .

(D2) Graded free resolutions and minimality. Suppose R = k[x1, . . . , xk] is Zd
≥0-graded, and fix

graded R-modules M and N . We say a map ϕ : M → N is graded if deg(f) = deg(ϕ(f))
for every homogeneous f ∈M .

Throughout this problem, the ideals I and J refer to those defined before Problem (D1).

(a) Prove if ϕ is graded, then kerϕ is a homogeneous submodule of M .

(b) Retrace through the proof in Problem (D1)(c). Conclude that every graded module M
over a graded ring R has a free resolution in which each Fi and each ϕi are graded
(we say such a free resolution is graded).

(c) The ideals in the examples prior to Problem (D1) are homogeneous, but technically
the free resolutions we constructed are not graded. Why?

(d) Let’s resolve this issue (pun intended). Find a free resolution of 〈x2 − y2〉 ⊂ k[x, y].
What degree must each monomial in F0 = R have for this resolution to be graded
under the standard grading?

(e) The grading of F0 in the previous problem is called a shifted grading, where we effec-
tively “translate” the grading by some amount. Notationally, we write R(a) to indicate
that deg(xb) + a is the original degree of xb ∈ R. Determine the value of a so that

0←− 〈x2 − y2〉 ←− R(a)←− 0

is a (standard) graded free resolution (be careful!).
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(f) Returning again to the free resolutions constructed before Problem (D1), identify the
appropriate graded shift of each summand of each Fi, and verify that with those
choices, the resolutions are graded. Note that for finitely graded resolutions, each shift
value a will be a vector!

(g) We are now ready to examine minimality. A graded free resolution is minimal if
every nonzero entry of each matrix is nonconstant. Determine which free resolutions
constructed before Problem (D1) are minimal (the answer should not be surprising).

(h) Given a graded module M , the graded Betti number βi,a(M) equals the number of
summands of R(−a) appearing in Fi in a minimal graded free resolution forM . Find all
nonzero Betti numbers of the modules I, J , R/I and R/J using the free resolutions
from before Problem (D1).

It turns out that every graded module M has a minimal graded free resolution, and that
any two minimal free resolutions for M are isomorphic as graded free resolutions (a notion
we will not define here). This has numerous important consequences; for instance, the Betti
elements of a numerical semigroup S with defining ideal IS are precisely the values of a such
that β1,a(R/IS) > 0. This can be seen in the last resolution before Problem (D1), where J is
the defining ideal for S = 〈6, 9, 20〉, and F1 = R(−18) ⊕ R(−60) contains some all-too-familiar
values. More generally, the uniqueness of minimal free resolutions is what makes Betti elements
(and more generally, graded Betti numbers) well-defined.
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Homework problems. You must submit all homework problems in order to receive full credit.

(H1) For each of the following rings R and R-modules M , find a minimal graded free resolution
of M , and use it to find the graded Betti numbers of M .

(a) R = k[x, y] and M = R/〈x3, y3, x2y − xy2〉, under the standard grading.

(b) R = k[x, y, z]/〈xy, xz, yz〉 and M = R/〈x〉, under the fine grading.

(H2) Suppose I ⊂ R = k[x, y] is a monomial ideal. Obtain a minimal free resolution for R/I,
and characterize the (finely) graded Betti numbers in terms of the staircase diagram of I.

(H3) Suppose I = 〈x1, . . . , xk〉 ⊂ R = k[x1, . . . , xk]. Obtain a minimal free resolution for R/I,
and find the (finely) graded Betti numbers.

(H4) Fix a field k and an exact sequence

0←− V0 ←− V1 ←− · · · ←− V` ←− 0

of finite dimensional vector spaces over k. Prove that

∑̀
i=0

(−1)i dim(Vi) = 0.
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