Spring 2021, Math 522: Problem Set 0
 Due: Thursday, January 28th, 2021
 Proof Writing Review

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Suppose $x, y \in \mathbb{R}$. Prove $x^{3}+x^{2} y=y^{2}+x y$ if and only if $y=x^{2}$ or $y=-x$.
(H2) Suppose $x \in \mathbb{R}$ with $x>0$.
(a) Use induction on n to prove that

$$
(1+x)^{n} \geq 1+n x
$$

for all $n \in \mathbb{Z}$ with $n \geq 1$.
(b) Is part (a) still true if the " $x>0$ " assumption is omitted? If so, where in your proof did you use this assumption?
(H3) Prove that $\log _{2}(3)$ is irrational.
(H4) Fix a set A and a relation R on A. Consider the following false statement.
"If R is symmetric and transitive, then R is reflexive."
Articulate the error in the following "proof" of the above statement.
Proof. Since R is symmetric, $(a, b) \in R$ implies $(b, a) \in R$ for any $a, b \in A$. Since R is transitive, $(a, b) \in R$ and $(b, a) \in R$ together imply $(a, a) \in R$. As such, $(a, a) \in R$ for all $a \in A$, so we conclude R is reflexive.
(H5) Determine whether each of the following statements is true or false. Prove your claims.
(a) The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)=\frac{x}{x^{2}+1}
$$

is injective.
(b) The function $f: \mathbb{Z} \rightarrow \mathbb{R}$ given by

$$
f(x)=\frac{x}{x^{2}+1}
$$

is injective.

