Spring 2021, Math 522: Problem Set 2 Due: Thursday, February 11th, 2021 The Fundamental Theorem of Arithmetic

(D1) Prime Factorization and $G C D s$. The goal of this problem is to prove the following theorem.
Theorem. If $a=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$ and $b=p_{1}^{t_{1}} \cdots p_{k}^{t_{k}}$ for some distinct primes p_{1}, \ldots, p_{k} with each $r_{i}, s_{i} \geq 0$, then $\operatorname{gcd}(a, b)=p_{1}^{\min \left(r_{1}, t_{1}\right)} \cdots p_{k}^{\min \left(r_{k}, t_{k}\right)}$.
(a) Write your answer to Problem (P1) and the above theorem on the board.
(b) Given $a, b \in \mathbb{Z}$, is it possible that $\operatorname{gcd}(7 a, 7 b)=91$? Is it possible $\operatorname{gcd}(17 a, 17 b)=19$? What theorem from the beginning of Tuesday's class are you using here?
(c) Let $a=2^{2} 3^{1} 5^{1}$ and $b=2^{1} 3^{2} 7^{1}$. Find (a, b), and verify that your answer is correct by finding all divisors of a and b. Also verify this matches the above theorem.

The goal of the remaining parts of this problem is to prove the above theorem.
(d) Prove that $\operatorname{gcd}(a, b)=1$ if and only if there is no prime p such that $p \mid a$ and $p \mid b$. Hint: remember that sometimes it is easier to prove the contrapositive of an implication!
(e) Prove that $p_{1}^{\min \left(r_{1}, t_{1}\right)} \cdots p_{k}^{\min \left(r_{k}, t_{k}\right)}$ is a divisor of both a and b.
(f) Use the above results to prove $\operatorname{gcd}(a, b)=p_{1}^{\min \left(r_{1}, t_{1}\right)} \cdots p_{k}^{\min \left(r_{k}, t_{k}\right)}$.
(D2) Using the Fundamental Theorem of Arithmetic. The goal of this problem is to practice writing proofs utilizing prime factorization.
(a) Below is a proof that there are infinitely many primes. Locate and correct the error in the proof.

Proof. By way of contradiction, suppose there are only k primes p_{1}, \ldots, p_{k}. Let

$$
a=p_{1} \cdots p_{k}+2
$$

For each i, we have $p_{i} \mid p_{1} \cdots p_{k}$, so $p_{i} \nmid a$. Since this holds for every prime, no primes divide a, meaning a cannot be written as a product of primes. This contradicts the fundamental theorem of arithmetic.
(b) The following is a proof by contradiction that if p is prime and $p \mid a_{1} \cdots a_{k}$, then $p \mid a_{i}$ for some i. Write an alternative proof that uses induction on k.

Proof. By way of contradiction, suppose p is prime and $p \mid a_{1} \cdots a_{k}$, but $p \nmid a_{i}$ for every i. Since $p \mid\left(a_{1} \cdots a_{k-1}\right)\left(a_{k}\right)$ and p is prime, either $p \mid a_{1} \cdots a_{k-1}$ or $p \mid a_{k}$. By assumption, $p \nmid a_{k}$, so $p \mid a_{1} \cdots a_{k-1}$. Repeating this process, we conclude $p \mid a_{1} a_{2}$. However, we assumed $p \nmid a_{1}$ and $p \nmid a_{2}$, which contradicts the fact that p is prime.
(c) Prove or provide a counterexample: if p is prime, $n \geq 1$, and $p^{n} \mid a^{n}$, then $p \mid a$.
(d) If the hypothesis " p is prime" is dropped from the previous statement, does that change its truth value? Again, provide a proof or a counterexample.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Use the Euclidean algorithm to find $\operatorname{gcd}(559,234)$.
(H2) Prove $a \mid b$ if and only if $a^{2} \mid b^{2}$.
(H3) Let $d=\operatorname{gcd}(a, b)$. Use the fundamental theorem of arithmetic to prove that if $a \mid c$ and $b \mid c$, then $a b \mid c d$.
(H4) Prove that if $p>3$ is prime, then $p^{2}+2$ is composite. Hint: consider the possible remainders when dividing p by 3 .
(H5) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If p is prime, $p \mid a^{2}$, and $p \mid a+b^{2}$, then $p \mid b$.
(b) If $d=\operatorname{gcd}(a, b)$, then $d^{2}=\operatorname{gcd}\left(a^{2}, b^{2}\right)$.
(c) If $p>2$ is prime, then $3 p+2$ is prime.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Suppose $r \in \mathbb{Q}$ and $n \in \mathbb{Z}_{\geq 0}$. Prove that if $r^{n} \in \mathbb{Z}$, then $r \in \mathbb{Z}$.

