Spring 2021, Math 522: Problem Set 3 Due: Thursday, February 18th, 2021
 Modular Arithmetic (Week 1)

(D1) Modular addition and multiplication. Determine which of the following are true without using a calculator.
(a) $1234567 \cdot 90123 \equiv 1 \bmod 10$.
(b) $2^{58} \equiv 3^{58} \bmod 5$.
(c) $2468 \cdot 13579 \equiv-3 \bmod 25$.
(d) $1234567 \cdot 90123=111262881731$.
(e) There exists $x \in \mathbb{Z}$ such that $x^{2}+x \equiv 1 \bmod 2$.
(f) There exists $x \in \mathbb{Z}$ such that $x^{3}+x^{2}-x+1=1522745$.
(D2) Divisibility rules. In the last lecture, we previewed a trick that let us to quickly determine when an integer is divisible by 9 . In what follows, fix a positive integer a, and suppose $\left(a_{r} \cdots a_{1} a_{0}\right)_{10}$ is the expression of a in base 10 , with $0 \leq a_{i} \leq 9$ for each i.
(a) Complete the following proof that $a \equiv\left(a_{r}+\cdots+a_{1}+a_{0}\right) \bmod 9$. Be clear which modular arithmetic property is used for each equality!

Proof. Expressing a in terms of its digits $a_{0}, a_{1}, \ldots, a_{r}$, we obtain

$$
\begin{aligned}
& {[a]_{9}=\left[a_{r}\left(_\right)+\cdots+a_{2} 10^{2}+a_{1} 10+a_{0}\right]_{9}} \\
& =\left[\square^{-}\right]_{9}+\cdots+[\ldots]_{9}+\left[a_{1} 10\right]_{9}+\left[a_{0}\right]_{9}
\end{aligned}
$$

$$
\begin{aligned}
& =[]_{9}[\ldots]_{9}+\cdots+[\ldots]_{9}[\ldots]_{9}+\left[a_{1}\right]_{9}[1]_{9}+\left[a_{0}\right]_{9} \\
& =\left[\square_{9}+\cdots+\left[\square_{0}\right]_{9}+\left[a_{1}\right]_{9}+\left[a_{0}\right]_{9}\right. \\
& =\left[a_{r}+\cdots+a_{1}+a_{0}\right]_{9},
\end{aligned}
$$

meaning $a \equiv\left(a_{r}+\cdots+a_{1}+a_{0}\right) \bmod 9$.
(b) Prove that $9 \mid a$ if and only if the sum of the digits of a is divisible by 9 .
(c) Modify your proof in part (a) to prove that an integer a is divisible by 3 if and only if the sum of its digits (in base 10) is divisible by 3 .
(d) Prove that $5 \mid a$ if and only if the last digit of a is 0 or 5 .
(e) Using parts (c) and (d), develop a criterion for when an integer is divisible by 15.

Homework problems. You must submit all homework problems in order to receive full credit.
Unless otherwise stated, $a, b, c, n \in \mathbb{Z}$ are arbitrary, and $n \geq 2$.
(H1) Prove that an integer a is divisible by 8 if and only if the last three digits of a in base 10 form a 3 -digit number that is divisible by 8 .
(H2) Prove $(a+b)^{5} \equiv a^{5}+b^{5} \bmod 5$ (this is a special case of the "Freshman's Dream" equation).
(H3) (a) Suppose $\left(a_{n} \cdots a_{1} a_{0}\right)_{10}$ expresses a in base 10 . Prove that $13 \mid a$ if and only if

$$
13 \mid\left(a_{n} \cdots a_{1}\right)_{10}+4 a_{0}
$$

(b) Use part (a) to decide whether 20192018 is divisible by 13.
(H4) Prove that if $\operatorname{gcd}(c, n)=1$, then $a c \equiv b c \bmod n$ implies $a \equiv b \bmod n$.
(H5) Determine whether each of the following is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If $a c \equiv b c \bmod n$ and $c \not \equiv 0 \bmod n$, then $a \equiv b \bmod n$.
(b) If $a b \equiv 0 \bmod n$, then $a \equiv 0 \bmod n$ or $b \equiv 0 \bmod n$.
(c) If $(a, n)=(b, n)$, then $a \equiv b \bmod n$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Find and prove a characterization of the integers $n \geq 1$ for which the following statement holds for all $a, b \in \mathbb{Z}$: "If $a^{2} \equiv b^{2} \bmod n$, then $a \equiv b \bmod n$ or $-a \equiv b \bmod n$."

