## Spring 2021, Math 522: Problem Set 4 Due: Thursday, February 25th, 2021 <br> Modular Arithmetic (Week 2)

(D1) The orders of elements of $\mathbb{Z}_{n}$. The order of an element $[a]_{n} \in \mathbb{Z}_{n}$ is the smallest integer $k$ such that adding $[a]_{n}$ to itself $k$ times yields $[0]_{n}$, that is $k a \equiv 0 \bmod n$.
(a) Find the order of each element of $\mathbb{Z}_{12}$. Do the same for $\mathbb{Z}_{10}$.
(b) Conjecture a formula for the order of $[a]_{n}$ in terms of $a$ and $n$.
(c) Let $k$ denote your conjectured order for $[a]_{n}$. Prove $[k]_{n}[a]_{n}=0$.
(d) Let $k$ denote your conjectured order for $[a]_{n}$, and suppose $[c]_{n}[a]_{n}=0$. Prove $k \mid c$.
(e) Prove that your conjectured order formula holds.
(f) For which $n$ does every nonzero $[a]_{n}$ have order $n$ ? Give a (short and sweet) proof.
(D2) Euler's theorem. Fix $n \geq 1$, and let $s=\phi(n)$ denote the number of integers $i \in[1, n-1]$ with $\operatorname{gcd}(i, n)=1$ (this is known as the Euler totient function). The goal of this problem is to prove the following theorem.

Theorem (Euler's Theorem). If $\operatorname{gcd}(a, n)=1$, then $a^{s} \equiv 1 \bmod n$.
(a) A reduced residue system for $n$ is a collection of integers $r_{1}, \ldots, r_{s}$ such that

- $\operatorname{gcd}\left(r_{i}, n\right)=1$ for each $i$,
- $r_{i} \not \equiv r_{j} \bmod n$ whenever $i \neq j$, and
- for any $a \in \mathbb{Z}$ with $\operatorname{gcd}(a, n)=1$, we have $a \equiv r_{i} \bmod n$ for some $i$.

Locate 2 distinct reduced residue systems for $n=12$ that share at least one element.
(b) Prove that if $r_{1}, \ldots, r_{s}$ is some reduced residue system for $n$ and $\operatorname{gcd}(a, n)=1$, then $a r_{1}, \ldots, a r_{s}$ is also a reduced residue system for $n$.
Hint: the "cancellation law" should come in handy somewhere in your proof.
(c) What does part (b) tell you about the products $r_{1} \cdots r_{s}$ and $\left(a r_{1}\right) \cdots\left(a r_{s}\right)$ modulo $n$ ?
(d) Conclude that Euler's theorem holds.
(e) Use Euler's theorem to prove Fermat's little theorem.

Homework problems. You must submit all homework problems in order to receive full credit.
Unless otherwise stated, $a, b, c, n, p \in \mathbb{Z}$ are arbitrary with $p>1$ prime and $n \geq 2$.
(H1) Determine how many primes $p$ satisfy $n!+2 \leq p \leq n!+n$. Prove your claim.
(H2) Prove that $10 \nmid(n-1)!+1$ for all $n \geq 1$. What does this tell you about the hypotheses for Wilson's theorem?
(H3) Prove that if $\operatorname{gcd}(a, n)=\operatorname{gcd}(a-1, n)=1$, then $1+a+a^{2}+\cdots+a^{\phi(n)-1} \equiv 0 \bmod n$.
(H4) Prove that if $p>1$ is prime, then $(a+b)^{p} \equiv a^{p}+b^{p} \bmod p$ for every $a, b \in \mathbb{Z}$ (this is known as the Freshmen's Dream).
Note: you may not use the binomial theorem in this problem.
(H5) Write up a full solution to parts (b) through (d) of Problem (D2) from discussion.
(H6) Determine whether each of the following is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If $\operatorname{gcd}(a, n)=1$, then the smallest positive $b$ such that $a^{b} \equiv 1 \bmod n$ is $b=\phi(n)$.
(b) If $n \geq 2$, then $(a+b)^{n} \equiv a^{n}+b^{n} \bmod n$ for every $a, b \in \mathbb{Z}$.

