Spring 2021, Math 522: Problem Set 4 Due: Thursday, February 25th, 2021 Modular Arithmetic (Week 2)

- (D1) The orders of elements of \mathbb{Z}_n . The order of an element $[a]_n \in \mathbb{Z}_n$ is the smallest integer k such that adding $[a]_n$ to itself k times yields $[0]_n$, that is $ka \equiv 0 \mod n$.
 - (a) Find the order of each element of \mathbb{Z}_{12} . Do the same for \mathbb{Z}_{10} .
 - (b) Conjecture a formula for the order of $[a]_n$ in terms of a and n.
 - (c) Let k denote your conjectured order for $[a]_n$. Prove $[k]_n[a]_n = 0$.
 - (d) Let k denote your conjectured order for $[a]_n$, and suppose $[c]_n[a]_n = 0$. Prove $k \mid c$.
 - (e) Prove that your conjectured order formula holds.
 - (f) For which n does every nonzero $[a]_n$ have order n? Give a (short and sweet) proof.
- (D2) Euler's theorem. Fix $n \ge 1$, and let $s = \phi(n)$ denote the number of integers $i \in [1, n-1]$ with gcd(i, n) = 1 (this is known as the Euler totient function). The goal of this problem is to prove the following theorem.

Theorem (Euler's Theorem). If gcd(a, n) = 1, then $a^s \equiv 1 \mod n$.

- (a) A reduced residue system for n is a collection of integers r_1, \ldots, r_s such that
 - $gcd(r_i, n) = 1$ for each i,
 - $r_i \not\equiv r_j \mod n$ whenever $i \neq j$, and
 - for any $a \in \mathbb{Z}$ with gcd(a, n) = 1, we have $a \equiv r_i \mod n$ for some *i*.

Locate 2 distinct reduced residue systems for n = 12 that share at least one element.

(b) Prove that if r_1, \ldots, r_s is some reduced residue system for n and gcd(a, n) = 1, then ar_1, \ldots, ar_s is also a reduced residue system for n.

Hint: the "cancellation law" should come in handy somewhere in your proof.

- (c) What does part (b) tell you about the products $r_1 \cdots r_s$ and $(ar_1) \cdots (ar_s)$ modulo n?
- (d) Conclude that Euler's theorem holds.
- (e) Use Euler's theorem to prove Fermat's little theorem.

Homework problems. You must submit *all* homework problems in order to receive full credit.

Unless otherwise stated, $a, b, c, n, p \in \mathbb{Z}$ are arbitrary with p > 1 prime and $n \ge 2$.

- (H1) Determine how many primes p satisfy $n! + 2 \le p \le n! + n$. Prove your claim.
- (H2) Prove that $10 \nmid (n-1)! + 1$ for all $n \ge 1$. What does this tell you about the hypotheses for Wilson's theorem?
- (H3) Prove that if gcd(a, n) = gcd(a 1, n) = 1, then $1 + a + a^2 + \dots + a^{\phi(n)-1} \equiv 0 \mod n$.
- (H4) Prove that if p > 1 is prime, then $(a+b)^p \equiv a^p + b^p \mod p$ for every $a, b \in \mathbb{Z}$ (this is known as the *Freshmen's Dream*). Note: you may **not** use the binomial theorem in this problem.
- (H5) Write up a full solution to parts (b) through (d) of Problem (D2) from discussion.
- (H6) Determine whether each of the following is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) If gcd(a, n) = 1, then the smallest positive b such that $a^b \equiv 1 \mod n$ is $b = \phi(n)$.
 - (b) If $n \ge 2$, then $(a+b)^n \equiv a^n + b^n \mod n$ for every $a, b \in \mathbb{Z}$.