Spring 2021, Math 522: Problem Set 5
 Due: Thursday, March 4th, 2021
 The Chinese Remainder Theorem

(D1) Solving modular systems.
(a) Determine which elements of $\mathbb{Z}_{10}, \mathbb{Z}_{11}$, and \mathbb{Z}_{12} have a multiplicative inverse. For each, find their inverse.
(b) Compare the full solution set of $7 x \equiv 7 \bmod 14$ to the full solution set of $x \equiv 1 \bmod 14$. What lessons/cautions can we learn from this?
(c) Find a complete set of solutions to each of the following systems.
(i) $9 x \equiv 5 \bmod 11$
(ii) $9 x+7 \equiv 2 \bmod 12$
(iii) $9 x+7 \equiv 1 \bmod 12$
(iv) $2 x \equiv 6 \bmod 12, \quad 3 x \equiv 6 \bmod 12$
(v) $3 x \equiv 15 \bmod 30, \quad 5 x \equiv 15 \bmod 30$
(vi) $x \equiv 8 \bmod 10, \quad x \equiv 1 \bmod 12$
(vii) $x \equiv 8 \bmod 10, \quad x \equiv 4 \bmod 12$
(D2) The Chinese Remainder Theorem. The goal for this problem is to prove the following.
Theorem (Chinese Remainder Theorem). Suppose n_{1}, \ldots, n_{k} are pairwise coprime, and $\operatorname{gcd}\left(a_{i}, n_{i}\right)=1$ for each i. There is a unique simlutaneous solution to the system

$$
a_{1} x \equiv b_{1} \bmod n_{1}, \quad a_{2} x \equiv b_{2} \bmod n_{2}, \quad \ldots, \quad a_{k} x \equiv b_{k} \bmod n_{k}
$$

modulo $N=n_{1} n_{2} \cdots n_{k}$.
(a) Determine which of the following systems can be solved using the Chinese Remainder Theorem. For those that can, find all solutions.
(i) $x \equiv 5 \bmod 7, \quad x \equiv 3 \bmod 11$
(ii) $2 x \equiv 3 \bmod 7, \quad 4 x \equiv 1 \bmod 11$
(iii) $2 x \equiv 3 \bmod 7, \quad 4 x \equiv 1 \bmod 11, \quad 4 x \equiv 4 \bmod 8$
(iv) $2 x \equiv 3 \bmod 7, \quad 4 x \equiv 1 \bmod 10, \quad 4 x \equiv 4 \bmod 8$
(b) Prove the Chinese Remainder Theorem when $k=1$.
(c) Locate a single modular equation with identical solution set to the system

$$
x \equiv b_{1} \bmod n_{1} \quad \text { and } \quad x \equiv b_{2} \bmod n_{2}
$$

Prove that your equation has the same solution set.
(d) Using the previous 2 parts as the bulk of your argument, give an inductive proof of the Chinese Remainder Theorem in the special case $a_{1}=\cdots=a_{k}=1$.
(e) Using the previous part, prove the Chinese Remainder Theorem in full.
(f) Describe a procedure for solving the system in the Chinese Remainder Theorem.

Homework problems. You must submit all homework problems in order to receive full credit.
Unless otherwise stated, $a, b, c, n, p \in \mathbb{Z}$ are arbitrary with $p>1$ prime and $n \geq 2$.
(H1) Find all $x, y \in \mathbb{Z}_{7}$ that are solutions to both of the equations

$$
x+[2]_{7} y=[4]_{7} \quad \text { and } \quad[4]_{7} x+[3]_{7} y=[4]_{7}
$$

(H2) Find a complete set of incongruent solutions modulo 770 to the system of equations

$$
\begin{aligned}
& 2 x \equiv 3 \bmod 5 \\
& 2 x \equiv 3 \bmod 7 \\
& 2 x \equiv 3 \bmod 11
\end{aligned}
$$

(H3) (a) Locate 3 consecutive integers a, b, c such that a is divisible by the square of a prime, b is divisible by the cube of a prime, and c is divisible by the 4 th power of a prime.
(b) Is part (a) possible if at least 2 of the 3 primes are equal?
(H4) Prove that for each n, there exists a sequence of n consecutive integers each of which is divisible by a perfect square other than 1.
(H5) Determine whether each of the following is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If $\operatorname{gcd}\left(n_{1}, n_{2}\right)=2$ and $\operatorname{gcd}\left(a_{1}, n_{1}\right)=\operatorname{gcd}\left(a_{2}, n_{2}\right)=1$, then the system

$$
\begin{aligned}
& a_{1} x \equiv b_{1} \bmod n_{1} \\
& a_{2} x \equiv b_{2} \bmod n_{2}
\end{aligned}
$$

has a common solution.
(b) If $n \geq 3$ and $a \not \equiv 0 \bmod n$, then there exists $x \in \mathbb{Z}$ such that $a x \not \equiv b \bmod n$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Suppose $n_{1} \mid n_{2}$. Develop a criterion (in terms of $a_{1}, a_{2}, b_{1}, b_{2}, n_{1}, n_{2}$) for when the system

$$
\begin{aligned}
& a_{1} x \equiv b_{1} \bmod n_{1} \\
& a_{2} x \equiv b_{2} \bmod n_{2}
\end{aligned}
$$

has a common solution.

