Spring 2021, Math 522: Problem Set 5 Due: Thursday, March 4th, 2021 The Chinese Remainder Theorem

- (D1) Solving modular systems.
 - (a) Determine which elements of \mathbb{Z}_{10} , \mathbb{Z}_{11} , and \mathbb{Z}_{12} have a multiplicative inverse. For each, find their inverse.
 - (b) Compare the full solution set of $7x \equiv 7 \mod 14$ to the full solution set of $x \equiv 1 \mod 14$. What lessons/cautions can we learn from this?
 - (c) Find a complete set of solutions to each of the following systems.
 - (i) $9x \equiv 5 \mod 11$
 - (ii) $9x + 7 \equiv 2 \mod 12$
 - (iii) $9x + 7 \equiv 1 \mod 12$
 - (iv) $2x \equiv 6 \mod 12$, $3x \equiv 6 \mod 12$
 - (v) $3x \equiv 15 \mod 30$, $5x \equiv 15 \mod 30$
 - (vi) $x \equiv 8 \mod 10$, $x \equiv 1 \mod 12$
 - (vii) $x \equiv 8 \mod 10$, $x \equiv 4 \mod 12$
- (D2) The Chinese Remainder Theorem. The goal for this problem is to prove the following.

Theorem (Chinese Remainder Theorem). Suppose n_1, \ldots, n_k are pairwise coprime, and $gcd(a_i, n_i) = 1$ for each *i*. There is a unique simultaneous solution to the system

 $a_1x \equiv b_1 \mod n_1, \qquad a_2x \equiv b_2 \mod n_2, \qquad \dots, \qquad a_kx \equiv b_k \mod n_k$

modulo $N = n_1 n_2 \cdots n_k$.

(a) Determine which of the following systems can be solved **using the Chinese Remain-der Theorem**. For those that can, find all solutions.

(i) $x \equiv 5 \mod 7$,	$x \equiv 3 \mod{11}$	
(ii) $2x \equiv 3 \mod 7$,	$4x \equiv 1 \mod 11$	
(iii) $2x \equiv 3 \mod 7$,	$4x \equiv 1 \bmod{11},$	$4x \equiv 4 \mod 8$
(iv) $2x \equiv 3 \mod 7$,	$4x \equiv 1 \bmod 10,$	$4x \equiv 4 \bmod 8$

- (b) Prove the Chinese Remainder Theorem when k = 1.
- (c) Locate a single modular equation with identical solution set to the system

 $x \equiv b_1 \mod n_1$ and $x \equiv b_2 \mod n_2$.

Prove that your equation has the same solution set.

- (d) Using the previous 2 parts as the bulk of your argument, give an inductive proof of the Chinese Remainder Theorem in the special case $a_1 = \cdots = a_k = 1$.
- (e) Using the previous part, prove the Chinese Remainder Theorem in full.
- (f) Describe a procedure for solving the system in the Chinese Remainder Theorem.

Homework problems. You must submit *all* homework problems in order to receive full credit. Unless otherwise stated, $a, b, c, n, p \in \mathbb{Z}$ are arbitrary with p > 1 prime and $n \ge 2$.

(H1) Find all $x, y \in \mathbb{Z}_7$ that are solutions to both of the equations

 $x + [2]_7 y = [4]_7$ and $[4]_7 x + [3]_7 y = [4]_7$.

(H2) Find a complete set of incongruent solutions modulo 770 to the system of equations

$$2x \equiv 3 \mod 5$$
$$2x \equiv 3 \mod 7$$
$$2x \equiv 3 \mod 11$$

- (H3) (a) Locate 3 consecutive integers a, b, c such that a is divisible by the square of a prime, b is divisible by the cube of a prime, and c is divisible by the 4th power of a prime.
 - (b) Is part (a) possible if at least 2 of the 3 primes are equal?
- (H4) Prove that for each n, there exists a sequence of n consecutive integers each of which is divisible by a perfect square other than 1.
- (H5) Determine whether each of the following is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) If $gcd(n_1, n_2) = 2$ and $gcd(a_1, n_1) = gcd(a_2, n_2) = 1$, then the system

$$a_1 x \equiv b_1 \mod n_1$$
$$a_2 x \equiv b_2 \mod n_2$$

has a common solution.

(b) If $n \ge 3$ and $a \not\equiv 0 \mod n$, then there exists $x \in \mathbb{Z}$ such that $ax \not\equiv b \mod n$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Suppose $n_1 \mid n_2$. Develop a criterion (in terms of $a_1, a_2, b_1, b_2, n_1, n_2$) for when the system

$$a_1 x \equiv b_1 \mod n_1$$
$$a_2 x \equiv b_2 \mod n_2$$

has a common solution.