Spring 2021, Math 522: Problem Set 6 Due: Thursday, March 11th, 2021 Arithmetic Functions

- (D1) Formulas for d(n) and $\sigma(n)$. Let d(n) denote the number of positive divisors of n, and let $\sigma(n)$ denote the sum of the positive divisors of n.
 - (a) Find d(n), and $\sigma(n)$ for $n \leq 10$ and n = 42.
 - (b) Find a formula for d(p) and for $\sigma(p)$ when p is prime.
 - (c) Find a formula for $d(p^r)$ and $\sigma(p^r)$ when p is prime and $r \ge 1$. Write your formula for $\sigma(p^r)$ as a fraction with denominator p-1.
 - (d) We will prove in Problem (D2) that d(ab) = d(a)d(b) and $\sigma(ab) = \sigma(a)\sigma(b)$ whenever gcd(a,b) = 1. Use this and your above to derive formulas for d(n) and $\sigma(n)$ in terms of the prime factorization $n = p_1^{r_1} \cdots p_k^{r_k}$.
- (D2) Multiplicative functions. The goal for this problem is to prove that d(n) and $\sigma(n)$ are multiplicative on relatively prime integers.

In what follows, let $D_n = \{d > 0 : d \mid n\}$ denote the set of positive divisors of n.

- (a) Find D_4 , D_{15} , and D_{60} .
- (b) Given two subsets A, B ⊂ Z, define A · B = {ab : a ∈ A, b ∈ B} as the set of products of an element of A by an element of B.
 Find D₄ · D₁₅. What do you notice?
- (c) Suppose gcd(a, b) = 1. Prove that if $d \mid ab$, then d = a'b' for some $a' \mid a$ and $b' \mid b$.
- (d) Argue that in the previous part, the integers a' and b' are **unique**.
- (e) Are either of the previous 2 parts true if the hypothesis gcd(a, b) = 1 is dropped?
- (f) Conclude that if gcd(a,b) = 1, then $D_a \cdot D_b = D_{ab}$ and $|D_{ab}| = |D_a||D_b|$.
- (g) Conclude that if gcd(a, b) = 1, then d(ab) = d(a)d(b) and $\sigma(ab) = \sigma(a)\sigma(b)$.

Homework problems. You must submit *all* homework problems in order to receive full credit. Unless otherwise stated, $a, b, c, n, p \in \mathbb{Z}$ are arbitrary with p > 1 prime and $n \ge 2$.

- (H1) Find $\phi(441)$ without using a calculator. Hint: $441 = 3^2 7^2$.
- (H2) Locate infinitely many integers n such that $10 \mid \phi(n)$.
- (H3) Every $n \ge 1$ satisfies $d(n) < 2\sqrt{n}$.
- (H4) (a) Prove that $n \mid (\phi(n)\sigma(n) + 1)$ if n is prime.
 - (b) Prove that divisibility fails to hold if $p^2 \mid n$ for some prime p.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) In this problem, we will prove that $\phi(n)$ is multiplicative on relatively prime integers, as was shown for both d(n) and $\sigma(n)$ in discussion.

Let $\mathbb{Z}_n^* = \{[a]_n : \gcd(a, n) = 1\}$ denote the set of units in \mathbb{Z}_n , and consider the function $f : \mathbb{Z}_{nm}^* \to \mathbb{Z}_n^* \times \mathbb{Z}_m^*$ given by $f([a]_{nm}) = ([a]_n, [a]_m)$.

- (a) Prove that f is well-defined, that is, if $[a]_{nm} = [b]_{nm}$, then $f([a]_{nm}) = f([b]_{nm})$.
- (b) Prove that if gcd(n, m) = 1, then f is one-to-one.
- (c) Use the Chinese Remainder Theorem to prove that if gcd(n,m) = 1, then f is onto.
- (d) Use the previous parts to conclude that if gcd(n,m) = 1, then $\phi(nm) = \phi(n)\phi(m)$.