Spring 2021, Math 522: Problem Set 6
 Due: Thursday, March 11th, 2021
 Arithmetic Functions

(D1) Formulas for $d(n)$ and $\sigma(n)$. Let $d(n)$ denote the number of positive divisors of n, and let $\sigma(n)$ denote the sum of the positive divisors of n.
(a) Find $d(n)$, and $\sigma(n)$ for $n \leq 10$ and $n=42$.
(b) Find a formula for $d(p)$ and for $\sigma(p)$ when p is prime.
(c) Find a formula for $d\left(p^{r}\right)$ and $\sigma\left(p^{r}\right)$ when p is prime and $r \geq 1$. Write your formula for $\sigma\left(p^{r}\right)$ as a fraction with denominator $p-1$.
(d) We will prove in Problem (D2) that $d(a b)=d(a) d(b)$ and $\sigma(a b)=\sigma(a) \sigma(b)$ whenever $\operatorname{gcd}(a, b)=1$. Use this and your above to derive formulas for $d(n)$ and $\sigma(n)$ in terms of the prime factorization $n=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$.
(D2) Multiplicative functions. The goal for this problem is to prove that $d(n)$ and $\sigma(n)$ are multiplicative on relatively prime integers.
In what follows, let $D_{n}=\{d>0: d \mid n\}$ denote the set of positive divisors of n.
(a) Find D_{4}, D_{15}, and D_{60}.
(b) Given two subsets $A, B \subset \mathbb{Z}$, define $A \cdot B=\{a b: a \in A, b \in B\}$ as the set of products of an element of A by an element of B.
Find $D_{4} \cdot D_{15}$. What do you notice?
(c) Suppose $\operatorname{gcd}(a, b)=1$. Prove that if $d \mid a b$, then $d=a^{\prime} b^{\prime}$ for some $a^{\prime} \mid a$ and $b^{\prime} \mid b$.
(d) Argue that in the previous part, the integers a^{\prime} and b^{\prime} are unique.
(e) Are either of the previous 2 parts true if the hypothesis $\operatorname{gcd}(a, b)=1$ is dropped?
(f) Conclude that if $\operatorname{gcd}(a, b)=1$, then $D_{a} \cdot D_{b}=D_{a b}$ and $\left|D_{a b}\right|=\left|D_{a}\right|\left|D_{b}\right|$.
(g) Conclude that if $\operatorname{gcd}(a, b)=1$, then $d(a b)=d(a) d(b)$ and $\sigma(a b)=\sigma(a) \sigma(b)$.

Homework problems. You must submit all homework problems in order to receive full credit.
Unless otherwise stated, $a, b, c, n, p \in \mathbb{Z}$ are arbitrary with $p>1$ prime and $n \geq 2$.
(H1) Find $\phi(441)$ without using a calculator.
Hint: $441=3^{2} 7^{2}$.
(H2) Locate infinitely many integers n such that $10 \mid \phi(n)$.
(H3) Every $n \geq 1$ satisfies $d(n)<2 \sqrt{n}$.
(H4) (a) Prove that $n \mid(\phi(n) \sigma(n)+1)$ if n is prime.
(b) Prove that divisibility fails to hold if $p^{2} \mid n$ for some prime p.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) In this problem, we will prove that $\phi(n)$ is multiplicative on relatively prime integers, as was shown for both $d(n)$ and $\sigma(n)$ in discussion.
Let $\mathbb{Z}_{n}^{*}=\left\{[a]_{n}: \operatorname{gcd}(a, n)=1\right\}$ denote the set of units in \mathbb{Z}_{n}, and consider the function $f: \mathbb{Z}_{n m}^{*} \rightarrow \mathbb{Z}_{n}^{*} \times \mathbb{Z}_{m}^{*}$ given by $f\left([a]_{n m}\right)=\left([a]_{n},[a]_{m}\right)$.
(a) Prove that f is well-defined, that is, if $[a]_{n m}=[b]_{n m}$, then $f\left([a]_{n m}\right)=f\left([b]_{n m}\right)$.
(b) Prove that if $\operatorname{gcd}(n, m)=1$, then f is one-to-one.
(c) Use the Chinese Remainder Theorem to prove that if $\operatorname{gcd}(n, m)=1$, then f is onto.
(d) Use the previous parts to conclude that if $\operatorname{gcd}(n, m)=1$, then $\phi(n m)=\phi(n) \phi(m)$.

