Spring 2021, Math 522: Problem Set 8
 Due: Thursday, March 25th, 2021
 Primitive Roots

(D1) Counting primitive roots. Fix $n \geq 2$.
(a) Find the number of primitive roots in $\mathbb{Z}_{6}, \mathbb{Z}_{7}$, and \mathbb{Z}_{9}.

Hint: divide and conquer within your group!
(b) In what follows, let $N=\phi(n)$, and let

$$
\mathbb{Z}_{n}^{*}=\left\{[a]_{n} \in \mathbb{Z}_{n}: \operatorname{gcd}(a, n)=1\right\}
$$

Verify that \mathbb{Z}_{n}^{*} is closed under multiplication and that $\left|\mathbb{Z}_{n}^{*}\right|=N$.
(c) Let α denote a fixed primitive root modulo n. Consider the map

$$
\begin{gathered}
f: \mathbb{Z}_{n}^{*} \longrightarrow \mathbb{Z}_{N} \\
{\left[\alpha^{b}\right]_{n} \longmapsto[b]_{N}}
\end{gathered}
$$

Write explicitly where f sends every element of \mathbb{Z}_{n}^{*} in the special case $n=9$ and $\alpha=2$. For example, $f\left([2]_{9}\right)=[1]_{6}$ and $f\left([4]_{9}\right)=f\left(\left[2^{2}\right]_{9}\right)=[2]_{6}$.
(d) Verify that f is well-defined (that is, if $\left[\alpha^{b}\right]_{n}=\left[\alpha^{c}\right]_{n}$, then $b \equiv c \bmod N$).

Hint: use the lemma from the start of today's class.
(e) Prove that f is one-to-one and onto.

Hint: prove f is one-to-one, then argue $\left|\mathbb{Z}_{n}^{*}\right|=\left|\mathbb{Z}_{N}\right|$ to conclude f must also be onto.
(f) Prove that $f\left(\left[\alpha^{b}\right]\left[\alpha^{c}\right]\right)=f\left(\left[\alpha^{b}\right]\right)+f\left(\left[\alpha^{c}\right]\right)$ for any $b, c \in \mathbb{Z}$.
(g) Prove that α^{b} is a primitive root modulo n if and only if $[b]_{N}$ has (additive) order N (that is, if and only if $\operatorname{gcd}(b, N)=1$).
(h) Find a formula in terms of n for the number of primitive roots modulo n.
(D2) Existence of primitive roots. The goal of this problem is to prove parts of the following.
Theorem. There exists a root modulo n if and only if $n=2, n=4, n=p^{r}$ for some odd prime p, or $n=2 p^{r}$ for some odd prime p.
(a) Verify the theorem for $n=2,4,8,10,15$.

Hint: divide and conquer within your group!
(b) Use induction on $k \geq 3$ to prove that if a is odd, then

$$
a^{2^{k-2}} \equiv 1 \bmod 2^{k}
$$

(c) Use the previous part to prove if n is a power of 2 , then the theorem holds.
(d) It turns out that if $\operatorname{gcd}(m, n)=1$ and we have $a^{k} \equiv 1 \bmod n$ and $a^{\ell} \equiv 1 \bmod m$, then

$$
a^{\operatorname{lcm}(k, j)} \equiv 1 \bmod n m
$$

(we will not be proving this today). Using this fact, if $\operatorname{gcd}(a, 91)=1$, what is the largest possible multiplicative order of a modulo $91 ?$
(e) Use the previous part to prove the theorem holds if n is divisible by 2 odd primes.
(f) Conclude the forward direction of the theorem.

Note: the remainder of the proof can be found in the exercises of Andrews 7.2.

Homework problems. You must submit all homework problems in order to receive full credit.
Unless otherwise stated, $a, b, c, n, p \in \mathbb{Z}$ are arbitrary with $p>1$ prime and $n \geq 2$.
(H1) Find all primitive roots modulo 14.
(H2) Determine the number of integers $n \leq 1000$ that have a primitive element modulo n.
Hint: there are 168 primes less than 1000 , of which 95 are less than 500 .
(H3) Determine which integers n have a unique primitive root modulo n.
(H4) Suppose p is prime, a is a primitive root modulo p, and $k \mid(p-1)$. Find the number of incongruent solutions modulo p to

$$
x^{k} \equiv a \bmod p
$$

(H5) (a) Locate 4 primes p for which

$$
x^{2} \equiv-1 \bmod p
$$

has an integer solution, and 4 primes for which it has no solutions.
(b) Determine for which primes p the equation

$$
x^{2} \equiv-1 \bmod p
$$

has an integer solution.
Note: your answer should be an "if and only if" characterization, with a proof!

