Spring 2021, Math 522: Problem Set 11 Due: Thursday, April 22nd, 2021 Cyclotomic Polynomials

(D1) Finding cyclotomic polynomials. Factor $x^n - 1$ as a product of cyclotomic polynomials for each of the following values of n. Identify each factor as $\Phi_d(x)$ for some $d \mid n$.

Hint: you may find the following formulas useful.

 $a^{2}-1 = (a+1)(a-1),$ $a^{3}-1 = (a-1)(a^{2}+a+1),$ $a^{3}+1 = (a+1)(a^{2}-a+1)$ (a) n = 3(b) n = 9(c) n = 8

- (d) n = 18 (hint: $\Phi_{18}(x)$ has 3 nonzero terms)
- (e) n = 24 (hint: $\Phi_{24}(x)$ has 3 nonzero terms)

(D2) Some general formulas.

- (a) Find $\Phi_p(x)$ for p prime.
- (b) Find $\Phi_n(x)$ when $n = 2^k$ for some $k \ge 1$. Prove your formula holds. Hint: use induction on k.
- (c) Find a formula for $\Phi_n(0)$ that holds for every $n \ge 2$. Prove that your formula holds. Hint: consider how $x^n - 1$ factors.
- (d) Compute $\Phi_n(-1)$ for each odd $n \leq 10$.
- (e) Conjecture and prove a general formula for $\Phi_n(-1)$ when n > 1 is odd.
- (f) Find $\Phi_n(x)$ when $n = 3^k$ for some $k \ge 1$. Prove your formula holds.

Homework problems. You must submit *all* homework problems in order to receive full credit.

- Unless otherwise stated, $a, b, c, n, p \in \mathbb{Z}$ are arbitrary with p > 1 prime and $n \ge 2$.
- (H1) Factor $x^{20} 1$ as a product of cyclotomic polynomials. Identify each factor as $\Phi_d(x)$ for some $d \mid 20$.
- (H2) Show that if $n \ge 3$ is odd, then $\Phi_{2n}(x) = \Phi_n(-x)$.
- (H3) Let $N = \Phi(n)$. Prove that the coefficients of $\Phi_n(x)$ are symmetric (that is, if we write

$$\Phi_n(x) = a_N x^N + a_{N-1} x^{N-1} + \dots + a_1 x + a_0,$$

then $a_i = a_{N-i}$ for each i).

Hint: start by showing that $\Phi_n(x)$ and $x^N \Phi_n(1/x)$ have the same complex roots.

- (H4) Find a formula for $\Phi_n(1)$ in terms of n. Prove your formula holds. Hint: your formula will likely depend on how many distinct prime factors n has.
- (H5) Determine whether each of the following is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) For every $n \ge 3$, we have $\Phi_{2n}(x) = \Phi_n(-x)$.
 - (b) The roots of $x^n 1$ form the vertices of a regular *n*-gon.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Find a formula for $\Phi_n(-1)$ in terms of n.