Spring 2021, Math 522: Problem Set 14 Due: Thursday, May 6th, 2021 Additive Number Theory

- (D1) Minimal zero-sum sequences.
 - (a) Find all 8 minimal zero-sum sequences over \mathbb{Z}_7 of length 3.
 - (b) Find all 15 minimal zero-sum sequences over \mathbb{Z}_5 .
 - (c) Determine the length of the longest minimal zero-sum sequence over \mathbb{Z} that only uses the letters [-2], [-1], [0], [1], [2].
 - (d) Determine the length of the longest minimal zero-sum sequence over ℤ that only uses the letters [-3], [-2], [-1], [0], [1], [2], [3].
- (D2) Arithmetic congruence monoids. If $a, b \ge 1$ satisfy $a^2 \equiv a \mod b$, then the set

 $M_{a,b} = \{1\} \cup \{n \ge 1 : n \equiv a \mod b\}$

is known as an arithmetical congruence monoid.

- (a) Verify that $M_{4,6}$ is an arithmetic congruence monoid, as is $M_{1,b}$ for any $b \ge 1$.
- (b) Write down the first 10 elements of $M_{1,4}$. Have each member of your group pick 2 elements from this list to mutiply together, and verify the product also lies in $M_{1,4}$. Do the same for $M_{4,6}$.
- (c) Prove that for any $n, m \in M_{a,b}$, we have $nm \in M_{a,b}$.
- (d) We say n ∈ M_{a,b} is *irreducible* if n > 1 and we cannot write n = m₁m₂ for some m₁, m₂ ∈ M_{a,b} with m₁, m₂ > 1. Argue that 5, 9, 13, 21, and 49 are irreducible in M_{1.4}.
- (e) Argue that $4 \cdot 7^r$ is irreducible in $M_{4,6}$ for any $r \ge 1$.
- (f) A factorization of an element $n \in M_{a,b}$ is an expression of the form

 $n = m_1 \cdots m_k$

such that each $m_i \in M_{a,b}$ is irreducible. Find 2 factorizations of $441 \in M_{1,4}$ that are distinct (up to reordering). Hint: $441 = 3^2 7^2$.

- (g) Find all 3 factorizations of 34000 in $M_{4,6}$. Hint: $34000 = 2^4 \cdot 5^3 \cdot 17$.
- (h) Find all 8 factorizations of 442000 in $M_{4,6}$. Hint: 442000 = $2^4 \cdot 5^3 \cdot 13 \cdot 17$.

Homework problems. You must submit *all* homework problems in order to receive full credit. Unless otherwise stated, $a, b, c, n, p \in \mathbb{Z}$ are arbitrary with p > 1 prime and $n \ge 2$.

- (H1) (a) Find all 20 minimal zero-sum sequences over \mathbb{Z}_6 .
 - (b) Find a formula, in terms of n, for the number of minimal zero-sum sequences over \mathbb{Z}_n of length 2, and prove your formula holds.
- (H2) (a) Prove that if $m \in M_{1,4}$ is irreducible, then either (i) m is prime in \mathbb{Z} , or (ii) $m = p_1 p_2$ for primes p_1, p_2 satisfying $p_1, p_2 \equiv 3 \mod 4$.
 - (b) Locate an irreducible element of $M_{1,7}$ that is a product of exactly 6 primes in \mathbb{Z} . Note: it turns out this is the "longest" an irreducible in $M_{1,7}$ can be; that is, any irreducible in $M_{1,7}$ is a product of at most 5 primes in \mathbb{Z} .
 - (c) Locate an irreducible element of $M_{1,101}$ that is a product of exactly 100 primes in \mathbb{Z} . Note: it turns out this is, again, the "longest" an irreducible in $M_{1,101}$ can be.
- (H3) Determine whether each of the following is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) There is an irreducible element of $M_{6,10}$ that is a product of exactly 19 primes in \mathbb{Z} .
 - (b) No irreducible element of $M_{1,6}$ is a product of exactly 4 primes in \mathbb{Z} .

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Prove or disprove: for each $b \ge 1$, there exists $\ell \ge 1$ such that for any irreducible $m \in M_{1,b}$, the prime factorization of m in \mathbb{Z} has at most ℓ primes.