Spring 2021, Math 522: Problem Set 14 Due: Thursday, May 6th, 2021
 Additive Number Theory

(D1) Minimal zero-sum sequences.
(a) Find all 8 minimal zero-sum sequences over \mathbb{Z}_{7} of length 3.
(b) Find all 15 minimal zero-sum sequences over \mathbb{Z}_{5}.
(c) Determine the length of the longest minimal zero-sum sequence over \mathbb{Z} that only uses the letters $[-2],[-1],[0],[1],[2]$.
(d) Determine the length of the longest minimal zero-sum sequence over \mathbb{Z} that only uses the letters $[-3],[-2],[-1],[0],[1],[2],[3]$.
(D2) Arithmetic congruence monoids. If $a, b \geq 1$ satisfy $a^{2} \equiv a \bmod b$, then the set

$$
M_{a, b}=\{1\} \cup\{n \geq 1: n \equiv a \bmod b\}
$$

is known as an arithmetical congruence monoid.
(a) Verify that $M_{4,6}$ is an arithmetic congruence monoid, as is $M_{1, b}$ for any $b \geq 1$.
(b) Write down the first 10 elements of $M_{1,4}$. Have each member of your group pick 2 elements from this list to mutiply together, and verify the product also lies in $M_{1,4}$. Do the same for $M_{4,6}$.
(c) Prove that for any $n, m \in M_{a, b}$, we have $n m \in M_{a, b}$.
(d) We say $n \in M_{a, b}$ is irreducible if $n>1$ and we cannot write $n=m_{1} m_{2}$ for some $m_{1}, m_{2} \in M_{a, b}$ with $m_{1}, m_{2}>1$.
Argue that $5,9,13,21$, and 49 are irreducible in $M_{1,4}$.
(e) Argue that $4 \cdot 7^{r}$ is irreducible in $M_{4,6}$ for any $r \geq 1$.
(f) A factorization of an element $n \in M_{a, b}$ is an expression of the form

$$
n=m_{1} \cdots m_{k}
$$

such that each $m_{i} \in M_{a, b}$ is irreducible.
Find 2 factorizations of $441 \in M_{1,4}$ that are distinct (up to reordering).
Hint: $441=3^{2} 7^{2}$.
(g) Find all 3 factorizations of 34000 in $M_{4,6}$.

Hint: $34000=2^{4} \cdot 5^{3} \cdot 17$.
(h) Find all 8 factorizations of 442000 in $M_{4,6}$.

Hint: $442000=2^{4} \cdot 5^{3} \cdot 13 \cdot 17$.

Homework problems. You must submit all homework problems in order to receive full credit.
Unless otherwise stated, $a, b, c, n, p \in \mathbb{Z}$ are arbitrary with $p>1$ prime and $n \geq 2$.
(H1) (a) Find all 20 minimal zero-sum sequences over \mathbb{Z}_{6}.
(b) Find a formula, in terms of n, for the number of minimal zero-sum sequences over \mathbb{Z}_{n} of length 2 , and prove your formula holds.
(H2) (a) Prove that if $m \in M_{1,4}$ is irreducible, then either (i) m is prime in \mathbb{Z}, or (ii) $m=p_{1} p_{2}$ for primes p_{1}, p_{2} satisfying $p_{1}, p_{2} \equiv 3 \bmod 4$.
(b) Locate an irreducible element of $M_{1,7}$ that is a product of exactly 6 primes in \mathbb{Z}.

Note: it turns out this is the "longest" an irreducible in $M_{1,7}$ can be; that is, any irreducible in $M_{1,7}$ is a product of at most 5 primes in \mathbb{Z}.
(c) Locate an irreducible element of $M_{1,101}$ that is a product of exactly 100 primes in \mathbb{Z}. Note: it turns out this is, again, the "longest" an irreducible in $M_{1,101}$ can be.
(H3) Determine whether each of the following is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) There is an irreducible element of $M_{6,10}$ that is a product of exactly 19 primes in \mathbb{Z}.
(b) No irreducible element of $M_{1,6}$ is a product of exactly 4 primes in \mathbb{Z}.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Prove or disprove: for each $b \geq 1$, there exists $\ell \geq 1$ such that for any irreducible $m \in M_{1, b}$, the prime factorization of m in \mathbb{Z} has at most ℓ primes.

