Spring 2021, Math 621: Problem Set 1 Due: Thursday, February 4th, 2021 Point Set Topology

- (D1) (Topological) Manifolds. Recall that a d-dimensional topological manifold (a d-manifold) is a space that is locally homeomorphic to \mathbb{R}^d .
 - (a) Recall that $S^d = \{p \in \mathbb{R}^{d+1} : ||p|| = 1\}$ is the (hollow) unit sphere in \mathbb{R}^{d+1} .
 - (i) Let $e_{d+1} \in S^d$ be the "north pole". Locate a homeomorphism $\mathbb{R}^d \to S^d \setminus \{e_{d+1}\}$. Hint: start by drawing a picture for d = 1, with \mathbb{R}^1 depicted as the x-axis in \mathbb{R}^2 .
 - (ii) Locate a second "patch" in S^d to conclude that S^d is a topological manifold.
 - (iii) Locate a covering of S^d by exactly 2(d+1) patches, each homeomorphic to \mathbb{R}^d , so that no patch can be omitted while still covering S^d . Hint: start with d = 1, and remember any open interval is homeomorphic to \mathbb{R} .
 - (b) Fix a d_1 -manifold T_1 and a d_2 -manifold T_2 . Prove that $T_1 \times T_2$ is a manifold, and determine its dimension.
- (D2) Projective space. In this problem, we will construct real projective space \mathbb{RP}^d .
 - (a) Fix an equivalence relation ~ on S^d . Is S^d / \sim necessarily a manifold?
 - (b) Let $\mathbb{RP}^d = S^d / \sim$, where $a, b \in S^d$ satisfy $a \sim b$ whenever a = b or a = -b. Prove \mathbb{RP}^d is a manifold. Hint: use Problem (D1)(a).
 - (c) Prove that \mathbb{RP}^1 is homeomorphic to S^1 . Is the same true for \mathbb{RP}^2 and S^2 ?
 - (d) Let $T = (\mathbb{R}^{d+1} \setminus \{0\})/\sim$, where $a, b \in \mathbb{R}^{d+1}$ with $a, b \neq 0$ satisfy $a \sim b$ whenever $a = \lambda b$ for some $\lambda \in \mathbb{R}$. In what way can we think of T as the set of lines in \mathbb{R}^{d+1} ?
 - (e) Prove that T is homeomorphic to \mathbb{RP}^d .
 - (f) The previous part yields a continuous surjection $\mathbb{R}^{d+1} \setminus \{0\} \to \mathbb{RP}^d$. Can this map be extended to a continuous map $\mathbb{R}^{d+1} \to \mathbb{RP}^d$?

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Determine whether each of the following is a topological manifold. Prove your claims.
 - (a) A (hollow) unit square in \mathbb{R}^2 .
 - (b) A *d*-manifold T for $d \ge 1$ with a single point $p \in T$ removed.
 - (c) The set $T_1 \cap T_2 \subset \mathbb{R}^3$ under the subspace topology, where $T_1, T_2 \subset \mathbb{R}^3$ are 2-manifolds with nonempty intersection.
- (H2) Fix a topological space T. A subset $C \subseteq T$ is *compact* if every open cover of C has a finite subcover; that is, whenever $C \subseteq \bigcup_{i \in \mathcal{I}} U_i$ for some collection of open sets $U_i \subseteq T$, there must exist $V_1, \ldots, V_k \in \{U_i : i \in \mathcal{I}\}$ such that $C \subseteq \bigcup_{i=1}^k V_i$. Note that the index set \mathcal{I} could have any cardinality; it could be infinite, even uncountable, or it could be finite.
 - (a) Using only the definition, prove that the set $C = \{0\} \cup \{1, \frac{1}{2}, \frac{1}{3}, \ldots\} \subset \mathbb{R}$ is compact.
 - (b) Prove that if $C \subseteq \mathbb{R}^d$ is compact, then C is closed and bounded. Note: this is actually an "if and only if" but the converse is substantially harder!
- (H3) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) Under a continuous map, the image of any compact set is compact.
 - (b) Under a continuous map, the preimage of any compact set is compact.
 - (c) If $f(x_1,\ldots,x_d) \in \mathbb{Z}[x_1,\ldots,x_d]$ is a polynomial with integer coefficients, then the set

 $T = \{(a_1, \dots, a_d) \in \mathbb{R}^d : f(a_1, \dots, a_d) = 0\}$

(called the graph of f) is a topological (d-1)-manifold.