Spring 2021, Math 621: Problem Set 2 Due: Thursday, February 11th, 2021
 Simplicial Complexes and Cell Complexes

(D1) Simplicial Complexes.
(a) Draw each of the following simplicial complexes, and determine which familiar space each is homeomorphic to.
(i) $\{123,124,134,234\}$
(ii) $\{123,134,145,125\}$
(b) Find a triangulation of the Möbius band (i.e. a 2 -dimensional strip of ribbon with a single twist). Do this in two different ways (e.g., with a different number of triangles).
(c) The Euler characteristic of a simplicial complex Δ is the alternating sum

$$
\chi(\Delta)=f_{0}-f_{1}+f_{2}-f_{3}+\cdots
$$

where f_{i} equals the number of i-dimensional faces of Δ. Compute the Euler characteristic of both triangulations of the Möbius band in the previous part.
(D2) Topology of group actions.
(a) Suppose a group G also happens to be a topological space. Given a normal subgroup H, determine a natural topological structure for H, and for the quotient group G / H.
(b) A group G that is also a topological space is called a topological group if the group operation, viewed as a map $G \times G \rightarrow G$, is continuous. Verify that \mathbb{R}^{d} is a topological group.
(c) What familiar topological space is the quotient group $\mathbb{R}^{2} / \mathbb{Z}^{2}$ (under the topology induced by \mathbb{R}^{2})?
(d) A group action is a (not necesssarily topological) group G and a set T together with an operation $G \times T \rightarrow T$ such that $g_{1}\left(g_{2} t\right)=\left(g_{1} g_{2}\right) t$ for any $g_{1}, g_{2} \in G$ and $t \in T$. The orbit of $t \in T$ is the set

$$
G t=\{g t: g \in G\} \subset T .
$$

It is known that the set of orbits, denoted T / G, is a partition of T.
Let $T=\mathbb{R}^{d} \backslash\{\overrightarrow{0}\}, G=\left(\mathbb{R}_{>0}, \cdot\right)$, and $G^{\prime}=(\mathbb{R} \backslash\{0\}, \cdot)$. Define a natural action of G on T, and determine which familiar space is T / G. Do the same with G^{\prime}.
(e) Consider S^{1} as the unit circle in \mathbb{R}^{2}, and define an action of the symmetric group S_{2} on S^{1} by coordinate permutation. Find a cell decomposition of S^{1} / S_{2} by first finding a cell decomposition of S^{1} such that the image of any cell under the action of S_{2} is again a cell (i.e., the action of S_{2} on S^{1} induces a permutation on cells).

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Draw each of the following simplicial complexes, and determine which familiar space each is homeomorphic to.
(a) $\Delta=\{123,134,145,125,236,346,456,256\}$
(b) $\Delta=\{12,13,14,15,16,17,23,45,67\}$
(H2) Recall $S^{1} \times S^{1}$ is a torus and $S^{1} \times D^{2}$ is a solid torus. Consider S^{3} as

$$
S^{3}=\left\{(x, y) \in \mathbb{C}^{2}:|x|^{2}+|y|^{2}=1\right\}
$$

that is, the unit sphere in \mathbb{C}^{2}. Fix a real number a satisfying $0<a<1$, and let

$$
\begin{aligned}
T(a) & =\left\{(x, y) \in S^{3}:|x|^{2}=a\right\} \\
U_{1}(a) & =\left\{(x, y) \in S^{3}:|x|^{2} \leq a\right\}, \text { and } \\
U_{2}(a) & =\left\{(x, y) \in S^{3}:|x|^{2} \geq a\right\}
\end{aligned}
$$

Prove that $T(a)$ is a torus and that $U_{1}(a)$ and $U_{2}(a)$ are solid tori with intersection $T(a)$. Deduce the homeomorphism

$$
S^{3} \cong\left(U_{1}(a) \amalg U_{2}(a)\right) / \sim
$$

where the equivalence relation \sim identifies $x \in U_{1}(a)$ with $y \in U_{2}(a)$ iff $x=y \in T(a)$.
(H3) A group action is a (not necesssarily topological) group G and a set T together with an operation $G \times T \rightarrow T$ such that $g_{1}\left(g_{2} t\right)=\left(g_{1} g_{2}\right) t$ for any $g_{1}, g_{2} \in G$ and $t \in T$. The orbit of $t \in T$ is the set

$$
G t=\{g t: g \in G\} \subset T
$$

It is known that the set of orbits, denoted T / G, is a partition of T.
(a) Let $T=\mathbb{R}^{d} \backslash\{\overrightarrow{0}\}, G=\left(\mathbb{R}_{>0}, \cdot\right)$, and $G^{\prime}=(\mathbb{R} \backslash\{0\}, \cdot)$. Define a natural action of G on T, and determine which familiar space is T / G. Do the same with G^{\prime}.
(b) Consider S^{2} as the unit sphere in \mathbb{R}^{3}, on which the symmetric group S_{3} acts by coordinate permutation. Find a cell decomposition of S^{2} that induces a cell decomposition on S^{2} / S_{3}. Try to use as few cells as possible.
(H4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) Given triangulations Δ_{1} and Δ_{2} of topological spaces T_{1} and T_{2}, respectively, there exists a triangulation of $T_{1} \times T_{2}$ whose vertices are ordered pairs (x, y) where x and y are vertices of Δ_{1} and Δ_{2}, respectively.
(b) If G is a group acting on a (topological) d-manifold X, then X / G is also a manifold.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Find a triangulation of the torus with the smallest number of triangles.

