Spring 2021, Math 621: Problem Set 5 Due: Thursday, March 4th, 2021 The Fundamental Group

- (D1) Wild conjecture time. For each of the following spaces T, conjecture which familiar group is the fundamental group.
 - (a) $T = \mathbb{RP}^2$
 - (b) $T = S^1 \times S^1$
 - (c) $T = S^1 \vee S^1$
- (D2) *Product spaces.* The goal of this problem is to prove

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)$$

for pointed spaces (X, x_0) and (Y, y_0) .

- (a) Using the natural projection maps $p: X \times Y \to X$ and $q: X \times Y \to Y$, construct a homomorphism $\pi_1(X \times Y, (x_0, y_0)) \to \pi_1(X, x_0) \times \pi_1(Y, y_0)$.
- (b) Argue this map is an isomorphism.
- (D3) Functoriality of the fundamental group. Given pointed spaces (X, x_0) and (Y, y_0) and a continuous map $f: X \to Y$ with $f(x_0) = y_0$, the map

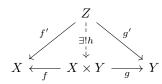
$$\begin{array}{c} f_*: \pi_1(X, x_0) \longrightarrow \pi_1(Y, y_0) \\ [\rho] \longmapsto [f \circ \rho] \end{array}$$

is a group homomorphism. Moreover, it turns out if f is a homotopy equivalence, then f_* is an isomorphism. The goal of this problem is to prove these facts.

- (a) Let $S^1 = [0,1]/(0 \sim 1)$. For $f: S^1 \to S^1 \times S^1$ given by $t \mapsto (t,t)$, find f_* .
- (b) Verify f_* is well-defined (that is, if $[\rho] = [\rho']$, then $[f \circ \rho] = [f \circ \rho']$).
- (c) Prove that f_* is a group homomorphism.
- (d) (i) Find π₁(ℝⁿ \ {0}) for each n ≥ 1.
 (ii) Use the previous part to argue that ℝⁿ ≇ ℝ² whenever n > 2.
- (e) Prove that if f is a homotopy equivalence, then f_* is an isomorphism.
- (f) Prove or disprove: if f_* is an isomorphism, then f is a homotopy equivalence.
- (g) Suppose $f: D^2 \to D^2$ has no fixed points. Define a map $g: D^2 \to S^1$ that sends $x \in D^2$ to the boundary point along the vector that points from f(x) to x. What can be said about the image of g_* ? What does this tell you about f?

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) For each group homomorphism $\varphi : \mathbb{Z} \to \mathbb{Z}$, locate a map $f : S^1 \to S^1$ such that $f_* = \varphi$.
- (H2) Prove that if G is a topological group (that is, G is both a topological space and a group whose operation $G \times G \to G$ is continuous), then $\pi_1(G, e)$ is Abelian.
- (H3) Recall that the *direct product* of two objects X, Y in a category C is the object $X \times Y$ together with morphisms $f: X \times Y \to X$ and $g: X \times Y \to Y$ satisfying the following universal property: given any object Z with maps $f': Z \to X$ and $g': Z \to Y$, there exist a unique map $h: Z \to X \times Y$ such that the diagram below commutes.



Prove that the category PTop of **pointed** topological spaces has products.

- (H4) Complete Problem (D3) parts (b), (c), and (e). It suffices to write "DONE" as your answer.
- (H5) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) Every homomorphism $\varphi : \mathbb{Z}^2 \to \mathbb{Z}$ has the form $\varphi = f_*$ for some $f : S^1 \times S^1 \to S^1$.
 - (b) If a continuous map $f: (X, x_0) \to (Y, y_0)$ is injective, then f_* is injective.
 - (c) If a continuous map $f: (X, x_0) \to (Y, y_0)$ is surjective, then f_* is surjective.
 - (d) If $f: X \to Y$ and $g: X \to Y$ satisfy $f_* = g_*$, then $f \simeq g$.