Spring 2021, Math 621: Problem Set 7 Due: Thursday, March 18th, 2021 Covering Spaces

- (D1) Universal covering spaces. A covering space \widetilde{X} of a path connected space X is said to be a universal covering space if \widetilde{X} is path connected and simply connected $(\pi_1(\widetilde{X})$ is trivial). Find a universal covering space for each of the following spaces.
 - (a) The circle S^1 .
 - (b) The sphere S^2 .
 - (c) The torus $S^1 \times S^1$.
 - (d) Real projective space \mathbb{RP}^d .
 - (e) The wedge product $S^2 \vee S^1$.
 - (f) A bouquet of 2 circles $S^1 \vee S^1$.
- (D2) Fundamental groups of covering spaces. For each subgroup $H \subset G$, identify a space (X, x_0) and a covering space (\tilde{X}, \tilde{x}_0) so that $\pi_{(X, x_0)} \cong G$ and $\pi_1(\tilde{X}, \tilde{x}_0)$ corresponds to H. Note: unless otherwise stated, the subgroups here are generated **as subgroups**, not as normal subgroups.
 - (a) $H = (2\mathbb{Z}) \times \mathbb{Z} \subset G = \mathbb{Z} \times \mathbb{Z}$.
 - (b) $H = \{0\} \times \mathbb{Z} \subset G = \mathbb{Z} \times \mathbb{Z}.$
 - (c) $H = \langle a \rangle \subset G = \langle a, b \rangle.$
 - (d) $H = \langle bab^{-1}, b^2ab^{-2}, \ldots \rangle \subset G = \langle a, b \rangle$

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Find a universal covering space of the union of S^2 and a diameter.
- (H2) Find a universal covering space of $\mathbb{RP}^2 \vee \mathbb{RP}^2$.
- (H3) Let $T = S^1 \times S^1$. Locate a covering space map $p: T \to K$, where K is the Klein bottle. Identify the corresponding subgroup of $\pi_1(K)$ corresponding to $\pi_1(T)$.
- (H4) Find a covering space of $S^1 \vee S^1$ corresponding to the normal subgroup $H = \langle a^2, b^2, (ab)^4 \rangle$ of $\pi_1(S^1 \vee S^1) \cong \langle a, b \rangle$.
- (H5) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) Given universal covering space \widetilde{X} and \widetilde{Y} for spaces X and Y respectively, the space $\widetilde{X} \times \widetilde{Y}$ is a universal covering space of $X \times Y$.
 - (b) Given universal covering space \widetilde{X} and \widetilde{Y} for spaces X and Y respectively, the space $\widetilde{X} \vee \widetilde{Y}$ is a universal covering space of $X \vee Y$.