Spring 2021, Math 621: Problem Set 8

Due: Thursday, March 25th, 2021

The Fundamental Theorem of Covering Spaces

(D1) The full Galois correspondence. Find all path-connected covering spaces of the given space.
(a) $X=\mathbb{R} \mathbb{P}^{d}$
(b) $X=\mathbb{R} \mathbb{P}^{2} \times \mathbb{R} \mathbb{P}^{2}$
(c) X is the space obtained from S^{1} by attaching a single 2 -cell that wraps around 4 times.
(D2) Deck transformations and monodromy. Given a covering space $p:\left(\tilde{X}, \widetilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$, the group $\pi_{1}\left(X, x_{0}\right)$ acts on the fiber $p^{-1}\left(x_{0}\right)$ via path lifting in the following way: given $x \in p^{-1}\left(x_{0}\right)$ and a loop $\gamma: I \rightarrow X$ based at x_{0}, define $[\gamma] \cdot x=y$ when γ lifts to a path $\widetilde{\gamma}: I \rightarrow \widetilde{X}$ with $\widetilde{\gamma}(0)=x$ and $\widetilde{\gamma}(1)=y$. This is known as the monodromy action.
(a) Draw a general illustration of this action. Be sure to label x_{0}, x, and y.
(b) Suppose $p:\left(\widetilde{X}, \widetilde{x}_{0}\right) \rightarrow\left(S^{1}, x_{0}\right)$ is a (not necessarily path-connected) 3 -sheeted cover of S^{1}. Writing $p^{-1}\left(x_{0}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$, the monodromy action of each element of $\pi_{1}\left(S^{1}\right) \cong \mathbb{Z}$ naturally corresponds to an element of the permutation group S_{3}, and the set of such permutations is a subgroup of S_{3}. Determine which subgroups of S_{3} are possible, and for each, locate a covering space \widetilde{X}.
(c) Suppose \tilde{X} is the universal cover of X. In lecture, we obtained a natural isomorphism $\operatorname{Gal}(\widetilde{X}, X) \cong \pi_{1}\left(X, x_{0}\right)$. This defines an action of $\pi_{1}\left(X, x_{0}\right)$ on $p^{-1}(x)$ obtained by restricting each deck transformation in $\operatorname{Gal}(\widetilde{X}, X)$ to the set $p^{-1}\left(x_{0}\right)$.
(i) Verify this action does not coincide with the monodromy action for $X=S^{1} \vee S^{1}$. Hint: write $\pi_{1}\left(S^{1} \vee S^{1}, x_{0}\right)=\langle a, b\rangle$ in the usual way, and let \widetilde{x}_{0} and \widetilde{x}_{1} denote the endpoints of the path obtained by lifting the loop b to \widetilde{X}. Where does each action by a send the vertices \widetilde{x}_{0} and \widetilde{x}_{1} ?
(ii) Verify this action does coincide with the monodromy action when $X=S^{1} \times S^{1}$.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Locate a covering space \widetilde{X} of the torus $T=S^{1} \times S^{1}$ whose corresponding subgroup of $\pi_{1}(T) \cong \mathbb{Z} \times \mathbb{Z}$ is $H=\langle(1,2),(3,2)\rangle$.
(H2) Let K denote the Klein bottle. Construct a non-normal covering space map $K \rightarrow K$.
(H3) Construct finite graphs X_{1} and X_{2} and a finite graph \widetilde{X} that is a covering space of both X_{1} and X_{2}, but so that there is no space having both X_{1} and X_{2} as covering spaces.
(H4) Find all path-connected covering spaces of $\mathbb{R} \mathbb{P}^{2} \vee \mathbb{R}^{2}$.

