Spring 2021, Math 621: Problem Set 9
 Due: Thursday, April 8th, 2021
 Venturing into Homological Algebra

(D1) Short exact sequences. A chain complex of the form

$$
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
$$

is called a short exact sequence if $\operatorname{ker}(f)=0, \operatorname{Im}(f)=\operatorname{ker}(g)$, and $\operatorname{Im}(g)=C$ (i.e., if the sequence is exact everywhere).
(a) Define maps f and g so that

$$
0 \longrightarrow \mathbb{Z}^{2} \xrightarrow{f} \mathbb{Z}^{3} \xrightarrow{g} \mathbb{Z} \oplus \mathbb{Z}_{3} \longrightarrow 0
$$

is exact.
(b) Consider the short exact sequence of Abelian groups at the start of this problem.
(a) Prove exactness holds at A if and only if f is injective.
(b) Prove exactness holds at C if and only if g is surjective.
(c) Suppose A, B, C are Abelian groups with $A \subset B$, and suppose

$$
0 \longrightarrow A \longleftrightarrow B \longrightarrow C \longrightarrow 0
$$

is a short exact sequence. Express C in terms of A and B.
(D2) Split exact sequences. A short exact sequence

$$
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
$$

is said to split if there exists an isomorphism $h: A \oplus C \longrightarrow B$ such that

commutes (where the maps in the top row are the "natural" maps to/from $A \oplus C$).
(a) Prove that the short exact sequence

$$
0 \longrightarrow \mathbb{Z}^{2} \xrightarrow{f} \mathbb{Z}^{3} \xrightarrow{g} \mathbb{Z} \longrightarrow 0
$$

splits, where

$$
f=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right] \quad \text { and } \quad g=\left[\begin{array}{lll}
0 & 1 & -1
\end{array}\right]
$$

(b) Prove that any short exact sequence of vector spaces over \mathbb{Q} splits.
(c) Does part (b) hold for finite dimensional vector spaces over any field \mathbb{k} ?

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Fix a finite set $V=\{0,1,2, \ldots, n\}$, and let $\Delta=2^{V}$ denote the power set of V. For each integer $d=-1,0,1, \ldots, n$, define the Abelian group

$$
C_{d}=\bigoplus_{\substack{F \in \Delta \\|F|=d+1}} \mathbb{Z}
$$

and let e_{F} denote the basis vector of C_{d} correspoding to $F \in \Delta$. Define the group homomorphism $\partial_{d}: C_{d} \rightarrow C_{d-1}$ by defining

$$
\partial_{d}\left(e_{F}\right)=\sum_{j=0}^{d}(-1)^{j} e_{F \backslash\left\{i_{j}\right\}}
$$

for each basis vector $e_{F} \in C_{d}$, where $F=\left\{i_{0}<\cdots<i_{d}\right\}$. Prove that

$$
0 \longrightarrow C_{n} \xrightarrow{\partial_{d}} \cdots \longrightarrow C_{2} \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0} \longrightarrow 0
$$

is a complex.
(H2) Given any B and a complex $C \bullet$ of the form

$$
0 \longrightarrow C_{0} \xrightarrow{f_{0}} C_{1} \xrightarrow{f_{1}} C_{2} \longrightarrow \cdots
$$

we can use the covariant functor $\operatorname{Hom}(B,-)$ to obtain a complex

$$
0 \longrightarrow \operatorname{Hom}\left(B, C_{0}\right) \xrightarrow{f_{0}^{*}} \operatorname{Hom}\left(B, C_{1}\right) \xrightarrow{f_{1}^{*}} \operatorname{Hom}\left(B, C_{2}\right) \longrightarrow \cdots
$$

which we will denote $\operatorname{Hom}\left(B, C_{\bullet}\right)$.
(a) Prove that $\operatorname{Hom}\left(B, C_{\bullet}\right)$ is indeed a complex.
(b) Given an arbitrary B, use the contravariant functor $\operatorname{Hom}(-, B)$ to define a complex $\operatorname{Hom}\left(C_{\bullet}, B\right)$ obtained from any complex C_{\bullet}. You do not need to prove that $\operatorname{Hom}\left(C_{\bullet}, B\right)$ is indeed a complex!
(H3) Suppose $C \bullet$ is an exact sequence

$$
0 \longrightarrow C_{0} \longrightarrow C_{1} \longrightarrow C_{2} \longrightarrow \cdots \longrightarrow C_{d} \longrightarrow 0
$$

of finite dimensional vector spaces over a field \mathbb{k}. Prove that

$$
\sum_{i=0}^{d}(-1)^{i} \operatorname{dim}_{\mathbb{k}} C_{i}=0
$$

(H4) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) Any short exact sequence of finitely generated Abelian groups splits.
(b) If the complex C_{\bullet} in (H2) is exact, then so is $\operatorname{Hom}\left(B, C_{\bullet}\right)$.

