Spring 2021, Math 621: Problem Set 11
 Due: Thursday, April 22nd, 2021
 Simplicial and Singular Homology

(D1) Free objects. An Abelian group C is free if $C \cong \bigoplus_{j \in J} \mathbb{Z}$ for some index set J. Analogously, a vector space V over a field \mathbb{k} is called free if $K \cong \bigoplus_{j \in J} \mathbb{k}$ for some index set J.
(a) Explain why every vector space is free. Demonstrate that the same is not true for Abelian groups.
(b) Draw a "universal property" diagram for the following statement about an object P.

Given any surjection $f: A \rightarrow B \rightarrow 0$ and any homomorhism $g: P \rightarrow B$, there exists a homomorphism $h: P \rightarrow A$ such that $f \circ h=g$.
(c) Prove the statement in the previous part if P is a free Abelian group.
(d) Given a nearly identical proof if P is a (free) vector space.
(e) Locate an Abelian group P that does not satisfy the statement in part (b).
(D2) Induced homomorphisms on homology. Suppose $f: C_{\bullet} \rightarrow D_{\bullet}$ is a morphism of complexes.
(a) Define a homomorphism $f_{*}: H_{n}\left(C_{\bullet}\right) \rightarrow H_{n}\left(D_{\bullet}\right)$ induced by f, and, using diagram chasing, prove that your homomorphism is well-defined.
(b) Prove that if f is an isomorphism of complexes (that is, if each $f_{i}: C_{i} \rightarrow D_{i}$ is an isomorphism), then $f_{*}: H_{n}\left(C_{\bullet}\right) \rightarrow H_{n}\left(D_{\bullet}\right)$ is an isomorphism as well.
(c) Suppose $X=A \cup B$. Use parts (a) and (b) to show $H_{n}(X ; \mathbb{Z}) \cong H_{n}(A ; \mathbb{Z}) \oplus H_{n}(B ; \mathbb{Z})$.
(d) Suppose $g: X \rightarrow Y$ is a continuous map. Use g to define a morphism of complexes $C_{\bullet}(X ; \mathbb{Z}) \rightarrow C \cdot(Y ; \mathbb{Z})$, and prove that f is indeed a morphism of complexes.
(e) Conclude $H_{n}(-; \mathbb{Z})$ is a functor $\mathrm{Top} \rightarrow \mathrm{Ab}$. Is it covariant or contravariant?

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Find a triangulation of $S^{1} \vee S^{2}$, and compute the simplicial homology over \mathbb{Q}.
(H2) Consider the annulus $X \subset \mathbb{R}^{2}$ centered at the origin with inner radius 1 and outer radius 2 . Let $\sigma_{1}, \sigma_{2}: \Delta^{1} \rightarrow X$ denote the half-circle arcs along the top and bottom of the inner circle, respectively, each with endpoints on the x-axis and traversed counter-clockwise. Likewise, let $\tau_{1}, \ldots, \tau_{4}: \Delta^{1} \rightarrow X$ denote the 4 quarter-arcs along the outer circle, with each τ_{i} in the i-th quadrant and both endpoints on axes, again traversed counter-clockwise.
Let $c=e_{\sigma_{1}}+e_{\sigma_{2}}$ and $c^{\prime}=e_{\tau_{1}}+e_{\tau_{2}}+e_{\tau_{3}}+e_{\tau_{4}}$. Prove $c, c^{\prime} \in \operatorname{ker} \partial_{1}$ and $[c]=\left[c^{\prime}\right] \in H_{1}(X ; \mathbb{Z})$.
(H3) (a) Prove the category of complexes (of vector spaces or Abelian groups) has direct sums.
(b) Fix a category \mathcal{C} having direct sums and a 0 object. An object C in \mathcal{C} is decomposable if it is isomorphic to a direct sum of nonzero objects in \mathcal{C}, and indecomposable otherwise. Determine which objects are indecomposable in the category of complexes of vector spaces over \mathbb{Q}.
(H4) Fix B and a complex C • of the form

$$
0 \longrightarrow C_{0} \xrightarrow{f_{0}} C_{1} \xrightarrow{f_{1}} C_{2} \longrightarrow \cdots
$$

Prove that if C_{\bullet} is exact and each C_{i} is free, then $\operatorname{Hom}\left(B, C_{\bullet}\right)$ is exact.
(H5) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
(a) If P is free, then the homomorphism h in Problem (D1) is unique.
(b) If $f: C \bullet \rightarrow D \bullet$ induces an isomorphism on homology, then f is an isomorphism of chain complexes.

