Spring 2021, Math 621: Problem Set 11 Due: Thursday, April 22nd, 2021 Simplicial and Singular Homology

- (D1) Free objects. An Abelian group C is free if $C \cong \bigoplus_{j \in J} \mathbb{Z}$ for some index set J. Analogously, a vector space V over a field k is called free if $K \cong \bigoplus_{j \in J} \mathbb{k}$ for some index set J.
 - (a) Explain why every vector space is free. Demonstrate that the same is **not** true for Abelian groups.
 - (b) Draw a "universal property" diagram for the following statement about an object P. Given any surjection f : A → B → 0 and any homomorphism g : P → B, there exists a homomorphism h : P → A such that f ∘ h = g.
 - (c) Prove the statement in the previous part if P is a free Abelian group.
 - (d) Given a nearly identical proof if P is a (free) vector space.
 - (e) Locate an Abelian group P that does **not** satisfy the statement in part (b).
- (D2) Induced homomorphisms on homology. Suppose $f: C_{\bullet} \to D_{\bullet}$ is a morphism of complexes.
 - (a) Define a homomorphism $f_* : H_n(C_{\bullet}) \to H_n(D_{\bullet})$ induced by f, and, using diagram chasing, prove that your homomorphism is well-defined.
 - (b) Prove that if f is an isomorphism of complexes (that is, if each $f_i : C_i \to D_i$ is an isomorphism), then $f_* : H_n(C_{\bullet}) \to H_n(D_{\bullet})$ is an isomorphism as well.
 - (c) Suppose $X = A \cup B$. Use parts (a) and (b) to show $H_n(X; \mathbb{Z}) \cong H_n(A; \mathbb{Z}) \oplus H_n(B; \mathbb{Z})$.
 - (d) Suppose $g: X \to Y$ is a continuous map. Use g to define a morphism of complexes $C_{\bullet}(X;\mathbb{Z}) \to C_{\bullet}(Y;\mathbb{Z})$, and prove that f is indeed a morphism of complexes.
 - (e) Conclude $H_n(-;\mathbb{Z})$ is a functor Top \rightarrow Ab. Is it covariant or contravariant?

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Find a triangulation of $S^1 \vee S^2$, and compute the simplicial homology over \mathbb{Q} .
- (H2) Consider the annulus $X \subset \mathbb{R}^2$ centered at the origin with inner radius 1 and outer radius 2. Let $\sigma_1, \sigma_2 : \Delta^1 \to X$ denote the half-circle arcs along the top and bottom of the inner circle, respectively, each with endpoints on the *x*-axis and traversed counter-clockwise. Likewise, let $\tau_1, \ldots, \tau_4 : \Delta^1 \to X$ denote the 4 quarter-arcs along the outer circle, with each τ_i in the *i*-th quadrant and both endpoints on axes, again traversed counter-clockwise.

Let $c = e_{\sigma_1} + e_{\sigma_2}$ and $c' = e_{\tau_1} + e_{\tau_2} + e_{\tau_3} + e_{\tau_4}$. Prove $c, c' \in \ker \partial_1$ and $[c] = [c'] \in H_1(X; \mathbb{Z})$.

- (H3) (a) Prove the category of complexes (of vector spaces or Abelian groups) has direct sums.
 - (b) Fix a category C having direct sums and a 0 object. An object C in C is *decomposable* if it is isomorphic to a direct sum of nonzero objects in C, and *indecomposable* otherwise. Determine which objects are indecomposable in the category of complexes of vector spaces over \mathbb{Q} .
- (H4) Fix B and a complex C_{\bullet} of the form

$$0 \longrightarrow C_0 \xrightarrow{f_0} C_1 \xrightarrow{f_1} C_2 \longrightarrow \cdots$$

Prove that if C_{\bullet} is exact and each C_i is free, then $\operatorname{Hom}(B, C_{\bullet})$ is exact.

- (H5) Determine whether each of the following statements is true or false. Prove each true statement, and give a counterexample for each false statement.
 - (a) If P is free, then the homomorphism h in Problem (D1) is unique.
 - (b) If $f: C_{\bullet} \to D_{\bullet}$ induces an isomorphism on homology, then f is an isomorphism of chain complexes.