Spring 2021, Math 621: Problem Set 13 Due: Thursday, May 6th, 2021
 The Long Exact Sequence of Homology

(D1) Using the long exact sequence of homology.
(a) Let $X=S^{1} \amalg S^{1}$, and let $A \subset X$ denote a 2-element set with one point on each circle. Use the long exact sequence of the good pair (X, A) to find $\widetilde{H}_{0}\left(S^{1} \vee S^{1} ; \mathbb{Z}\right)$ and $\widetilde{H}_{1}\left(S^{1} \vee S^{1} ; \mathbb{Z}\right)$.
(b) More generally, express $\widetilde{H}_{n}(X \vee Y ; \mathbb{Z})$ in terms of $\widetilde{H}_{n}(X ; \mathbb{Z})$ and $\widetilde{H}_{n}(Y ; \mathbb{Z})$.
(D2) The snake lemma. The goal of this problem is to prove that, given a short exact sequence

$$
0 \longrightarrow A_{\bullet} \stackrel{f}{\longrightarrow} B_{\bullet} \xrightarrow{g} C_{\bullet} \longrightarrow 0
$$

of complexes, there is a long exact sequence

$$
\cdots \longrightarrow H_{n}\left(A_{\bullet}\right) \xrightarrow{f_{*}} H_{n}\left(B_{\bullet}\right) \xrightarrow{g_{*}} H_{n}\left(C_{\bullet}\right) \xrightarrow{\partial} H_{n-1}\left(A_{\bullet}\right) \longrightarrow \cdots
$$

where the map ∂ is as defined in the lecture preceeding this problem.
(a) Prove that $g_{*} \circ f_{*}=0$, ensuring that $\operatorname{Im} f_{*} \subseteq \operatorname{ker} g_{*}$.
(b) Prove that $\partial \circ g_{*}=0$, ensuring that $\operatorname{Im} g_{*} \subseteq \operatorname{ker} \partial$.
(c) Prove that $f_{*} \circ \partial=0$, ensuring that $\operatorname{Im} \partial \subseteq \operatorname{ker} f_{*}$.
(d) Prove that $\operatorname{Im} f_{*} \supseteq \operatorname{ker} g_{*}$.
(e) Prove that $\operatorname{Im} g_{*} \supseteq \operatorname{ker} \partial$.
(f) Prove that $\operatorname{Im} \partial \supseteq \operatorname{ker} f_{*}$.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) (a) Let $X=S^{1} \times S^{1}$ denote the torus, presented as a square with sides identified in the usual way, and let $A=S^{1} \vee S^{1} \subset X$ denote the border of the square. Use the long exact sequence of the good pair (X, A) to find $\widetilde{H}_{1}(X ; \mathbb{Z})$ and $\widetilde{H}_{2}(X ; \mathbb{Z})$.
(b) Let X denote the Klein bottle, presented as a square with sides identified in the usual way, and let $A=S^{1} \vee S^{1} \subset X$ denote the border of the square. Use the long exact sequence of the good pair (X, A) to find $\widetilde{H}_{1}(X ; \mathbb{Z})$ and $\widetilde{H}_{2}(X ; \mathbb{Z})$.
(H2) Find the relative homology groups $H_{n}(X, A ; \mathbb{Z})$ where $X=S^{1} \times S^{1}$ and A is any finite subset of X containing k points.
(H3) Suppose X is a d-dimensional cell complex (that is, all cells have dimension at most d).
(a) Prove that $H_{n}(X ; \mathbb{Z})=0$ for $n>d$.
(b) Prove that $H_{d}(X ; \mathbb{Z})$ is free.

