Spring 2022, Math 579: Week 3 Problem Set
 Due: Thursday, February 17th, 2022
 Binomial Theorem and Combinatorial Proofs

Discussion problems. The problems below should be worked on in class.
(D1) Combinatorial proofs.
(a) Compare your answers to the preliminary problems, and come to a concensus.
(b) Fill in the blanks in the following combinatorial proof that for any $n \geq 0$,

$$
\sum_{k=0}^{n} 2^{k}\binom{n}{k}=3^{n}
$$

Proof. We will count the number of ways to choose subsets $A, B \subseteq[n]$ with $A \subseteq B$. Right side: for each $i \in[n]$, either $i \in A, i \in B \backslash A$, or \qquad . This yields 3^{n} possibilities. Left side: if we let $k=|B|$, then for each $k=0,1, \ldots, n$, there are \qquad choices for B, and \qquad ways to choose a subset $A \subseteq B$. This yields

$$
2^{0}\binom{n}{0}+2^{1}\binom{n}{1}+\cdots+2^{n}\binom{n}{n}
$$

possibilities. We conclude the left side must equal the right side.
(c) In the proof of the previous part, replace " $A, B \subseteq[n]$ with $A \subseteq B$ " in the first line with " $C, D \subseteq[n]$ with $C \cap D=\emptyset$ ", and then rewrite the rest of the proof accordingly.
(d) Give a combinatorial proof that whenever $0 \leq k \leq n-3$,

$$
\binom{n}{3}\binom{n-3}{k}=\binom{n}{k}\binom{n-k}{3} .
$$

(e) Give a combinatorial proof of the following identity for $n \geq 1$:

$$
\sum_{k=1}^{n} k\binom{n}{k}=n 2^{n-1}
$$

(D2) The binomial theorem. Recall the binomial theorem from Thursday:

$$
(x+z)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} z^{n-k}
$$

(a) Use the binomial theorem to find the coefficient of $x^{9} z^{15}$ in the expression $x^{5}\left(x^{2}-z\right)^{17}$.
(b) Use the binomial theorem to prove that for any $n \geq 0$,

$$
\sum_{k=0}^{n} 2^{k}\binom{n}{k}=3^{n}
$$

We call this an algebraic proof.
(c) Apply the binomial theorem (3 times!) to the expression

$$
(x+1)^{n+1}=x(x+1)^{n}+(x+1)^{n} .
$$

Then, reindex each sum to contain x^{k+1} (as opposed to x^{k}) and pull out terms so that each sum starts at $k=1$ and ends at $k=n$. Lastly, consolidate the right hand side into a single sum. Comparing coefficients on the left and right hand sides, what identity is obtained?

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Find the coefficient of $x^{11} z^{7}$ in the expansion of $(x+z)^{18}+x^{3}(x-z)^{15}$.
Hint: don't expand!!! This is what the binomial theorem is for!!!
(H2) Use induction on n to prove that for all $n \geq 1$,

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

Hint: use the identity

$$
\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1}
$$

in your inductive step.
(H3) Give a combinatorial proof that for all $n \geq 1$,

$$
\sum_{k=2}^{n} k(k-1)\binom{n}{k}=2^{n-2} n(n-1)
$$

(H4) Give an algebraic proof that for $n \geq 1$,

$$
\sum_{\substack{k=0 \\ k \text { even }}}^{n}\binom{n}{k} 2^{k}=\frac{3^{n}+(-1)^{n}}{2}
$$

Hint: write 3 and -1 each in a clever way, and then use the binomial theorem twice.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Give an algebraic proof that for any $n, m \in \mathbb{Z}_{\geq 0}$ with $m \leq n$, we have

$$
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}\binom{m+j}{m}= \begin{cases}(-1)^{n} & \text { if } n=m \\ 0 & \text { if } n \neq m\end{cases}
$$

