Spring 2022, Math 579: Week 7 Problem Set
 Due: Thursday, March 17th, 2022
 Introduction to Generating Functions

Discussion problems. The problems below should be worked on in class.
(D1) Formal power series.
(a) Fill in the blank in each of the following.
(i) $\sum_{n=0}^{\infty}-\quad z-=\frac{2}{1-3 z^{2}}$
(ii) $\sum_{n=0}^{\infty} \quad z-=\frac{z}{2+z}$
(b) Write each of the following as a rational function in z.
(i) $A(z)=\sum_{n=0}^{\infty} 2^{n-1} z^{n}$
(ii) $A(z)=\sum_{n=0}^{\infty}(-1)^{n} 2^{2 n} z^{n}$
(c) Find a formula for a_{n} in terms of n given the following $A(z)$.
(i) $A(z)=\frac{3 z^{2}+2 z+17}{1-z^{2}}$
(ii) $A(z)=\frac{3 z^{2}+2 z+17}{(1-z)^{2}}$
(d) For each of the following $A(z)$, locate a formula for the coefficients of $B(z)=1 / A(z)$. Then, prove via direct multiplication that $A(z) B(z)=1$.
(i) $A(z)=1-3 z+2 z^{2}$

Hint: find the first few coefficients of $B(z)$ by hand using the fact $A(z) B(z)=1$, then conjecture a formula for b_{n}, then prove your conjecture.
(ii) $A(z)=1-z+z^{2}-z^{3}+\cdots=\sum_{n \geq 0}(-1)^{n} z^{n}$ Hint: start by writing $A(z)$ as a rational function of z.
(D2) Power series derivatives. The "formal derivative" of $A(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots$ is defined

$$
A^{\prime}(z)=\frac{d}{d z} A(z)=a_{1}+2 a_{2} z+3 a_{3} z^{2}+\cdots=\sum_{n=0}^{\infty}(n+1) a_{n+1} z^{n}
$$

It turns out, formal derivatives satisfy Calculus 1 derivative rules (product rule, etc.).
(a) Take the formal derivative of the geometric series to verify (now, a third way) that

$$
\frac{1}{(1-z)^{2}}=\sum_{n=0}^{\infty}(n+1) z^{n}=1+2 z+3 z^{2}+\cdots
$$

(b) Manipulate the above expression to write $\sum_{n=0}^{\infty} n z^{n}$ as a rational expression in z.
(c) Use "formal differentiation" to express $\sum_{n=0}^{\infty} n^{2} z^{n}$ as a rational expression in z.
(D3) Consistency. The goal of this problem is to do some "sanity checks" on formal power series derivative rules. Recall the power series

$$
e^{z}=\sum_{n=0}^{\infty} \frac{1}{n!} z^{n}=1+\frac{1}{1!} z+\frac{1}{2!} z^{2}+\frac{1}{3!} z^{3}+\cdots
$$

(a) Verify the term-by-term derivative of the series for $e^{2 z}$ has the same coefficients as the series for $2 e^{2 z}$.
(b) Find the derivative of $z^{2} e^{z}$ using (i) term-by-term differentation, and (ii) using standard derivative rules, and verify they are equal.
(c) Verify that

$$
\frac{e^{z}-1}{1-z}=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} \frac{1}{k!}\right) z^{n}
$$

(d) Verify that the term-by-term derivative of the series in part (c) matches the one obtained from quotient rule.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Use term-by-term derivatives to obtain a formula for a_{n} for each of the following power series $A(z)=\sum_{n \geq 0} a_{n} z^{n}$. You may use the series

$$
\frac{1}{(1-z)^{2}}=\sum_{n \geq 0}(n+1) z^{n} \quad \text { or } \quad \frac{z}{(1-z)^{2}}=\sum_{n \geq 0} n z^{n}
$$

from class as a starting place.
(a) $A(z)=\frac{z+z^{2}}{(1-z)^{3}}$
(b) $A(z)=\frac{z+4 z^{2}+z^{3}}{(1-z)^{4}}$
(H2) For each of the following sequences, find an expression in terms of z for $A(z)=\sum_{\geq 0} a_{n} z^{n}$. Your answer should not contain any "..." or sigma-sums.
Hint: you can substantially shorten the algebra needed to obtain your answer with clever use of power series we have already encountered.
(a) $a_{n}=n^{3}+7 n^{2}+3 n-5$
(b) $a_{n}=n 2^{n}-n^{2} 3^{n}+\frac{1}{(n+2)!}$
(H3) (a) Prove that $A(z)=B(z)$ if and only if $a_{0}=b_{0}$ and $A^{\prime}(z)=B^{\prime}(z)$.
(b) Consider the power series
$S(z)=\sum_{n \geq 0} \frac{(-1)^{n}}{(2 n+1)!} z^{2 n+1}=z-\frac{1}{3!} z^{3}+\cdots \quad$ and $\quad C(z)=\sum_{n \geq 0} \frac{(-1)^{n}}{(2 n)!} z^{2 n}=1-\frac{1}{2!} z^{2}+\cdots$
Argue that $(S(z))^{2}+(C(z))^{2}=1$. Thinking back to Calculus 2, what familiar identity does this equality encode?
Hint: this can be done without heavy power series algebra! First, show $S^{\prime}(z)=C(z)$ and $C^{\prime}(z)=-S(z)$, and use this to show

$$
2 S(z) S^{\prime}(z)+2 C(z) C^{\prime}(z)=0
$$

Then use part (a).
(H4) Define $c(n)=1$ if there exists a way to write n as a sum of the values 3 and 5 , and $c(n)=0$ otherwise. For instance, $c(13)=1$ since $13=3+5+5$, and $c(15)=1$ since $15=5+5+5$ (as well as $15=3+3+3+3+3$), but $c(7)=0$ since there is no way to add 3 's and 5 's together to obtain 7. Prove that

$$
\sum_{n=0}^{\infty} c(n) z^{n}=\frac{1-z^{15}}{\left(1-z^{3}\right)\left(1-z^{5}\right)}
$$

Note: $c(0)=1$ since $0=0 \cdot 3+0 \cdot 5$.
Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Verify the "formal derivative rules": if $A(z)=\sum_{n \geq 0} a_{n} z^{n}$ and $B(z)=\sum_{n \geq 0} b_{n} z^{n}$, then
(i) $\frac{d}{d z}(A(z) B(z))=A^{\prime}(z) B(z)+A(z) B^{\prime}(z)$ (the product rule);
(ii) $\frac{d}{d z}\left(\frac{A(z)}{B(z)}\right)=\frac{A^{\prime}(z) B(z)-A(z) B^{\prime}(z)}{(B(z))^{2}}$ (the quotient rule); and
(iii) $\frac{d}{d z}(A(B(z)))=A^{\prime}(B(z)) B^{\prime}(z)$ (the chain rule).

Be sure to indicate any necessary assumptions on $B(z)$ in parts (ii) and (iii)!

