Spring 2022, Math 579: Week 8 Problem Set
 Due: Thursday, March 24th, 2022
 Recurrence Relations

Discussion problems. The problems below should be worked on in class.
(D1) Solving recurrence relations with generating functions. For each of the following, (i) compute a_{0}, \ldots, a_{5}, (ii) use generating functions to find a formula for a_{n} in terms of n, and (iii) verify your formula for $n \leq 5$.
(a) $a_{0}=1, a_{1}=2, a_{n}=4 a_{n-2}$ for $n \geq 2$.
(b) $a_{0}=1, a_{n}=3 a_{n-1}-2$ for $n \geq 1$.
(c) $a_{0}=3, a_{1}=1, a_{n}=2 a_{n-1}+3 a_{n-2}$ for $n \geq 2$.
(d) $a_{0}=1, a_{n}=2 a_{n-1}+n$ for $n \geq 1$.
(e) $a_{0}=3, a_{n}=n a_{n-1}-n^{2}$ for $n \geq 1$.

Hint: use exponential generating functions for this one!
(D2) Generating functions and integer partitions. Consider the identity

$$
\sum_{n \geq 0} p(n) z^{n}=\left(\frac{1}{1-z}\right)\left(\frac{1}{1-z^{2}}\right)\left(\frac{1}{1-z^{3}}\right) \cdots=\prod_{k \geq 1} \frac{1}{1-z^{k}}
$$

where $p(n)$ denotes the number of integer partitions of n.
(a) First, let's see why the above identity holds.
(i) Verify that the coefficient of z^{5} is 7 on both sides of the equation.

Hint: on the right hand side, expand each parenthetical using the geometric series.
(ii) Justify why the coefficient of z^{n} on the right hand side equals $p(n)$.
(b) Consider the power series

$$
\sum_{n \geq 0} a_{n}=\frac{1}{\left(1-z^{2}\right)\left(1-z^{3}\right)}
$$

(i) Complete the interpretation of a_{n} : "\# of integer partitions of n into \qquad $"$.
(ii) Use partial fractions to find a formula for a_{n}.

Hint: this can be done without resorting to radicals or complex roots! Use the factorizations $1-z^{2}=(1-z)(1+z)$ and $1-z^{3}=(1-z)\left(1+z+z^{2}\right)$.
(c) Let $p_{\text {even }}(n), p_{\text {odd }}(n)$, and $p_{\text {dist }}(n)$ denote the number of integer partitions of n into only even parts, into only odd parts, and into distinct parts, respectively.
(i) Adjust the above identity to obtain analogous "infinite product" expressions for

$$
\sum_{n \geq 0} p_{\text {even }}(n) z^{n}, \quad \sum_{n \geq 0} p_{\text {odd }}(n) z^{n}, \quad \text { and } \quad \sum_{n \geq 0} p_{\text {dist }}(n) z^{n}
$$

Hint: the third series will not require denominators.
(ii) Using your expressions, give a generating functions proof that $p_{\text {odd }}(n)=p_{\text {dist }}(n)$. Hint: do not expand to coefficients! Write out the first 5 parentheticals in each product, and look for ways to cleverly factor and cancel.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Use generating functions to find a_{n} if $a_{0}=1$ and $a_{n}=3 a_{n-1}+2^{n}$ for $n \geq 1$.
(H2) Use generating functions to find F_{n} if $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. Hint: verify first that $\omega+\bar{\omega}=1, \omega \cdot \bar{\omega}=-1$, and $1-z-z^{2}=(1-\omega z)(1-\bar{\omega} z)$, where

$$
\omega=\frac{1+\sqrt{5}}{2} \quad \text { and } \quad \bar{\omega}=\frac{1-\sqrt{5}}{2}
$$

(H3) Find an explicit formula for a_{n} if $a_{0}=1, a_{1}=1$, and $a_{n}=n a_{n-1}+n(n-1) a_{n-2}$ for $n \geq 2$. Hint: use exponential generating functions.
(H4) Consider the power series

$$
\sum_{n \geq 0} a_{n} z^{n}=\frac{1}{\left(1-z^{2}\right)\left(1-z^{3}\right)}
$$

The goal of this problem is to find a formula for a_{n} in 2 different ways.
Hint: your two formulas should be identical, and will likely have 6 cases, based on the equivalence class of n modulo 6 .
(a) Find a formula for a_{n} using partial fractions.

Hint: $1-z^{2}=(1-z)(1+z)$ and $1-z^{3}=(1-z)\left(1+z+z^{2}\right)$.
(b) Find a formula for a_{n} by first cleverly rewriting the rational expression so that the denominator is $\left(1-z^{6}\right)^{2}$.
(H5) Give a proof by induction that for each $d \geq 0$,

$$
\sum_{n=0}^{\infty} n^{d} z^{n}=\frac{Q_{d}(z)}{(1-z)^{d+1}}
$$

for some power series $Q_{d}(z)$ with finitely many nonzero terms.
Hint: start by identifying $Q_{0}(z), Q_{1}(z)$, and $Q_{2}(z)$ using Problem (H1) from last week.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Fix $d \geq 1$, and write the numerator in Problem (H5) as $Q_{d}(z)=a_{d} z^{d}+\cdots+a_{1} z+a_{0}$. It turns out that $Q_{d}(1)=a_{d}+\cdots+a_{1}+a_{0}=d$!, which also equals the number of permutations of $[d]$. Locate a counting question involving permutations of $[d]$ to which a_{m} is the answer.

