Spring 2022, Math 579: Week 9 Problem Set
 Due: Thursday, April 7th, 2022
 Generating Functions for Combinatorics

Discussion problems. The problems below should be worked on in class.
(D1) Understanding this "A-structure" stuff. Unless otherwise stated, let

$$
A(z)=\sum_{n \geq 0} a_{n} z^{n} \quad \text { and } \quad B(z)=\sum_{n \geq 0} \frac{b_{n}}{n!} z^{n}
$$

be the ordinary generating function of a_{n} and exponential generating function of b_{n}, resp.
(a) Compare answers to the prelim problems within your group, and come to a concensus.
(b) First, let's consider a concrete example. Let $a_{0}=0$ and $a_{n}=2^{n}$ for $n \geq 1$.
(a) Let $c_{n}=n$ denote the number of ways to pick a person from a lineup of n people, and let $C(z)=\sum_{n=1}^{\infty} c_{n} z^{n}$ denote its generating function. Using the composition formula, describe what the coefficients of $A(C(z))$ represent.
(b) With $C(z)$ as in the previous part, interpret the coefficients of $C(A(z))$.
(c) Write down a formula for the coefficient of z^{n} in the series $z A^{\prime}(z)$ in terms of a_{n}. Give a combinatorial interpretation of this value that uses the word " A-structures".
(d) Does your answer to the previous part account for the case $n=0$?
(e) Use the product formula to find a combinatorial interpretation of the coefficients of $z B(z)$ (as an exponential generating function). Use " B-structures" in your answer.
Then, invent a counting question to which the coefficient of z^{n} in $z B(z)$ is the answer.
(f) Suppose $C(z)=z /(1-z)$. Interpret the coefficients of $B(C(z))$ (as an exponential generating function).
(D2) Using generating functions to solve counting problems.
(a) Use the product formula to find an expression for the ordinary generating function of the number c_{n} of ways to take lineup of n PE students, split the lineup into 2 (contiguous) teams (call them "left" team and "right" team), and choose a team leader from within the "left" team. Then, find a formula for c_{n}.
(b) What if the "right" team must have an even number of children in it? You do not have to find a formula this time, just an expression for the ordinary generating function.
(c) Use composition of ordinary generating functions to prove that the number of strong compositions of n is 2^{n-1}.
(d) Let ℓ_{n} denote the number of orderings of $[n]$, and let $L(z)$ denote its exponential generating function. Prove $L(z)=1+z L(z)$ combinatorially, then derive $\ell_{n}=n$!.
(e) Find the exponential generating function $T(z)$ for the number t_{n} of ways to arrange n books on two bookshelves so that each shelf has at least one book. Then, find a closed form for t_{n}.
(f) Suppose from our class of n students, we select an odd number of students to serve on a committee, and select an even number of committee members to serve on a subcommittee. Find the exponential generating function for the number c_{n} of ways to do this, and then use this to derive a closed formula for c_{n}.
(g) Suppose we have n cards. We want to split them into an even number of nonempty subsets, form a line within each subset, then arrange the subsets in a line. Use generating functions to determine the number of different ways to do this.
(h) Prove $\sum_{n \geq 0} B(n) z^{n}=e^{e^{z}-1}$, where $B(n)$ is the number of set partitions of $[n]$.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) For each of the following, find the an expression for the (ordinary) generating function $D(z)=\sum_{n=0}^{\infty} d_{n} z^{n}$ using the combinatorial interpretation of multiplication and composition of ordinary generating functions.
Note: your final answer to each part should be a rational expression for $D(z)$ in terms of z, and should not have any infinite sums or products. In particular, you are not required to find a formula for d_{n} !
(a) Suppose our course meets for n days. Let d_{n} denote the number of ways to split the available days into 3 units (counting methods, generating functions, and graph theory),
(i) select some (possibly empty) collection of days from the first unit for a pop quiz,
(ii) select an odd number of days from the second unit to hold discussions, and
(iii) select a single day from the third unit in which to give an exam.
(b) What if in part (a), each unit should be at least 2 days long?
(c) What if in part (a), exactly half of the days in the first unit must have a pop quiz, and they must alternate days (quiz, no quiz, quiz, no quiz, etc)?
(H2) Choose one of the parts of the previous problem, and use the generating function expression you obtained to find a formula for d_{n}. You may use a computer (e.g., WolframAlpha) to perform the partial fractions step for you.
(H3) Write solutions to any 2 parts of Problem (D2) involving exponential generating functions.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Suppose $c_{0}=1$ and

$$
c_{n+1}=\sum_{k=0}^{n} c_{k} c_{n-k}
$$

for $n \geq 0$. Prove that the generating function $C(z)$ of c_{n} satisfies

$$
C(z)=\frac{1+\sqrt{1-4 z}}{2 z}
$$

and use it to derive the closed formula

$$
c_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

