Spring 2022, Math 579: Preliminary Problem Set 9 Due: Thursday, March 17th, 2022 Generating Functions for Combinatorics

Preliminary problems. These problems should be completed before discussion on Thursday.

(P1) Fill in the first 3 entries in the following table, based on the notes from Tuesday's lecture, to give a combinatorial interpretation of the value of c_n in terms of a_n and b_n . The words "A-structure" and "B-structure" should appear in each.

Based on your entries in those boxes, conjecture an answer for the box in lower right corner.

	Ordinary Generating Functions	Exponential Generating Functions
	$A(z) = \sum_{n=0}^{\infty} a_n z^n, B(z) = \sum_{n=0}^{\infty} b_n z^n,$ $C(z) = \sum_{n=0}^{\infty} c_n z^n$	$A(z) = \sum_{n=0}^{\infty} \frac{a_n}{n!} z^n, B(z) = \sum_{n=0}^{\infty} \frac{b_n}{n!} z^n,$ $C(z) = \sum_{n=0}^{\infty} \frac{c_n}{n!} z^n$
C(z) = A(z)B(z)		$c_n = \#$ ways to
C(z) = A(B(z))	$c_n = \#$ ways to	$c_n = \#$ ways to