Spring 2022, Math 621: Week 1 Problem Set Due: Thurday, February 3rd, 2022 Numerical and Affine Semigroups

Discussion problems. The problems below should be worked on in class.

- (D1) Minimal generating sets. Fix a subsemigroup $S \subset (\mathbb{Z}_{\geq 0}^d, +)$. The goal of this problem is to prove that S has a unique generating set that is minimal with respect to containment.
 - (a) Determine the unique minimal generating set of each of the following semigroups.
 - (i) $S = \langle 6, 9, 15, 20, 26, 42, 55 \rangle$
 - (ii) $S = \langle 11, 15, 19, \dots, 111 \rangle$
 - (iii) $S = \langle (0,2), (1,2), (2,0), (2,2), (2,3), (3,2), (3,3) \rangle$
 - $\text{(iv)} \ S = \{(a,b) \in \mathbb{Z}_{\geq 0}^2: a \leq 3b \text{ and } b \leq 4a\}$
 - (v) $S = \langle G \rangle$, where $G = \{(a, b) : a \equiv 1 \mod 3 \text{ and } b \equiv 2 \mod 3\}$.
 - (b) Let $S^* = S \setminus \{0\}$. Compare the sets S and $S^* + S^*$ for $S = \langle 3, 5 \rangle$.
 - (c) Let $\mathcal{A}(S) = S^* \setminus (S^* + S^*)$. Prove that $S = \langle \mathcal{A}(S) \rangle$.
 - (d) Explain briefly why any generating set for S must contain $\mathcal{A}(S)$.
 - (e) Prove that if d = 1, then the elements of $\mathcal{A}(S)$ must be distinct modulo $m = \min \mathcal{A}(S)$. Conclude that $\mathcal{A}(S)$ must be finite in this case.
 - (f) Must $\mathcal{A}(S)$ be finite if $d \ge 2$?

(D2) Geometry of semigroups. The goal of this problem is to explore several geometric theorems.

- (a) It turns out any finitely generated subsemigroup $S = \langle \alpha_1, \ldots, \alpha_k \rangle \subset \mathbb{Z}^r$ is isomorphic to some subsemigroup of $\mathbb{Z}_{\geq 0}^d$, where $d = \dim_{\mathbb{R}} \operatorname{span}_{\mathbb{R}}(S)$ (the *affine dimension* of S). For each of the following, compute d, and locate an isomorphic subsemigroup of $\mathbb{Z}_{\geq 0}^d$.
 - (i) $S = \langle (9,6), (15,10), (21,14) \rangle$
 - (ii) $S = \langle (0,2), (2,1), (-1,2) \rangle$
 - (iii) $S = \langle (2,0,2), (2,3,5), (4,3,7) \rangle$
- (b) Gordan's Lemma: given a finite list of linear inequalities with rational coefficients, the subset of \mathbb{Z}^d satisfying them is a finitely generated semigroup.

Determine the (finite) minimal generating set of each of the following.

- (i) $S = \{(a, b) \in \mathbb{Z}^2 : 0 \le 3a \le 2b\}$
- (ii) $S = \{v \in \mathbb{Z}^3 : Av \le 0\}$, where

$$A = \begin{bmatrix} -1 & 0 & 0\\ 2 & -3 & 0\\ 0 & 1 & -2 \end{bmatrix}$$

and each row of $Av \leq 0$ is interpreted as an inequality on v_1, v_2, v_3 .

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Fix a commutative semigroup (S, +). A relation \sim on S is a congruence if (i) \sim is an equivalence relation, and (ii) \sim is closed under translation (i.e., $a \sim b$ implies $a + c \sim b + c$ for all $a, b, c \in S$).
 - (a) Given a collection \sim_1, \ldots, \sim_r of congruences on S, define the common refinement \sim by $a \sim b$ whenever $a \sim_i b$ for all i (we often write $\sim = \bigcap_i \sim_i$). Prove that \sim is a congruence on S.
 - (b) Prove that if \sim is a congruence on S, then the set S/\sim of equivalence classes of \sim is a semigroup under the operation [a] + [b] = [a + b]. Be sure to prove well-definedness!
 - (c) Given a semigroup homomorphism $\varphi : S \to T$, the *kernel* of φ , denoted ker φ , is the relation \sim on S setting $a \sim b$ whenever $\varphi(a) = \varphi(b)$. Prove ker φ is a congruence on S.
 - (d) State and prove a version of the first isomorphism theorem for semigroups.
- (H2) Fix a field k, and let $R = k[x_1, \ldots, x_k]$. In what follows, for $a \in \mathbb{Z}_{\geq 0}^k$, we use the shorthand

$$x^a = x_1^{a_1} \cdots x_k^{a_k}$$

- A (unital) binomial is a polynomial of the form $x^a x^b \in R$ for some $a, b \in \mathbb{Z}_{\geq 0}^k$.
- (a) Fix an ideal $I \subset R$. Define a relation \sim_I on $\mathbb{Z}_{\geq 0}^k$ by

$$a \sim_I b$$
 whenever $x^a - x^b \in I$

for $a, b \in \mathbb{Z}_{\geq 0}^k$. Prove that \sim_I is a congruence on $\mathbb{Z}_{\geq 0}^k$.

(b) Consider the semigroup homomorphism $\varphi : \mathbb{Z}_{\geq 0}^3 \to \mathbb{Z}_{\geq 0}$ given by

$$(a, b, c) \longmapsto 4a + 5b + 6c$$

Locate an ideal $I \subset \Bbbk[x, y, z]$ such that $\sim_I = \ker \varphi$. Find a finite generating set for I. (c) Consider the semigroup homomorphism $\varphi : \mathbb{Z}_{\geq 0}^5 \to \mathbb{Z}_{\geq 0}$ given by

 $(a_1, a_2, a_3, a_4, a_5) \longmapsto 15a_1 + 97a_2 + 152a_3 + 153a_4 + 201a_5.$

Locate an ideal $I \subset \Bbbk[x_1, x_2, x_3, x_4, x_5]$ such that $\sim_I = \ker \varphi$.

Hint: do **not** attempt to write down generators for I! Instead, specify I as the kernel of a carefully chosen ring homomorphism.

- (H3) Determine whether each of the following statements is true or false. Prove your assertions.
 - (a) For any $\alpha_1, \ldots, \alpha_k \in \mathbb{Z}_{\geq 0}^d$ with $d \geq 2$, the set $\langle \alpha_1, \ldots, \alpha_k \rangle \setminus \langle \alpha_1, \ldots, \alpha_{k-1} \rangle$ is infinite.
 - (b) Given any congruence \sim on $\mathbb{Z}_{\geq 0}^k$, the semigroup $S = \mathbb{Z}_{\geq 0}^k / \sim$ is cancellative, that is, a + c = b + c implies a = b for all $a, b, c \in S$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Locate a commutative, cancellative semigroup S such that (i) S is finitely generated, (ii) $0 \in S$ is the only element of S with an inverse, and (iii) S is not isomorphic to any affine semigroup.