Spring 2022, Math 621: Week 1 Problem Set
 Due: Thurday, February 3rd, 2022
 Numerical and Affine Semigroups

Discussion problems. The problems below should be worked on in class.
(D1) Minimal generating sets. Fix a subsemigroup $S \subset\left(\mathbb{Z}_{>0}^{d},+\right)$. The goal of this problem is to prove that S has a unique generating set that is minimal with respect to containment.
(a) Determine the unique minimal generating set of each of the following semigroups.
(i) $S=\langle 6,9,15,20,26,42,55\rangle$
(ii) $S=\langle 11,15,19, \ldots, 111\rangle$
(iii) $S=\langle(0,2),(1,2),(2,0),(2,2),(2,3),(3,2),(3,3)\rangle$
(iv) $S=\left\{(a, b) \in \mathbb{Z}_{\geq 0}^{2}: a \leq 3 b\right.$ and $\left.b \leq 4 a\right\}$
(v) $S=\langle G\rangle$, where $G=\{(a, b): a \equiv 1 \bmod 3$ and $b \equiv 2 \bmod 3\}$.
(b) Let $S^{*}=S \backslash\{0\}$. Compare the sets S and $S^{*}+S^{*}$ for $S=\langle 3,5\rangle$.
(c) Let $\mathcal{A}(S)=S^{*} \backslash\left(S^{*}+S^{*}\right)$. Prove that $S=\langle\mathcal{A}(S)\rangle$.
(d) Explain briefly why any generating set for S must contain $\mathcal{A}(S)$.
(e) Prove that if $d=1$, then the elements of $\mathcal{A}(S)$ must be distinct modulo $m=\min \mathcal{A}(S)$. Conclude that $\mathcal{A}(S)$ must be finite in this case.
(f) Must $\mathcal{A}(S)$ be finite if $d \geq 2$?
(D2) Geometry of semigroups. The goal of this problem is to explore several geometric theorems.
(a) It turns out any finitely generated subsemigroup $S=\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle \subset \mathbb{Z}^{r}$ is isomorphic to some subsemigroup of $\mathbb{Z}_{\geq 0}^{d}$, where $d=\operatorname{dim}_{\mathbb{R}} \operatorname{span}_{\mathbb{R}}(S)$ (the affine dimension of S). For each of the following, compute d, and locate an isomorphic subsemigroup of $\mathbb{Z}_{\geq 0}^{d}$.
(i) $S=\langle(9,6),(15,10),(21,14)\rangle$
(ii) $S=\langle(0,2),(2,1),(-1,2)\rangle$
(iii) $S=\langle(2,0,2),(2,3,5),(4,3,7)\rangle$
(b) Gordan's Lemma: given a finite list of linear inequalities with rational coefficients, the subset of \mathbb{Z}^{d} satisfying them is a finitely generated semigroup.
Determine the (finite) minimal generating set of each of the following.
(i) $S=\left\{(a, b) \in \mathbb{Z}^{2}: 0 \leq 3 a \leq 2 b\right\}$
(ii) $S=\left\{v \in \mathbb{Z}^{3}: A v \leq 0\right\}$, where

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
2 & -3 & 0 \\
0 & 1 & -2
\end{array}\right]
$$

and each row of $A v \leq 0$ is interpreted as an inequality on v_{1}, v_{2}, v_{3}.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Fix a commutative semigroup $(S,+)$. A relation \sim on S is a congruence if $(\mathrm{i}) \sim$ is an equivalence relation, and (ii) \sim is closed under translation (i.e., $a \sim b$ implies $a+c \sim b+c$ for all $a, b, c \in S)$.
(a) Given a collection $\sim_{1}, \ldots, \sim_{r}$ of congruences on S, define the common refinement \sim by $a \sim b$ whenever $a \sim_{i} b$ for all i (we often write $\sim=\bigcap_{i} \sim_{i}$). Prove that \sim is a congruence on S.
(b) Prove that if \sim is a congruence on S, then the set S / \sim of equivalence classes of \sim is a semigroup under the operation $[a]+[b]=[a+b]$. Be sure to prove well-definedness!
(c) Given a semigroup homomorphism $\varphi: S \rightarrow T$, the kernel of φ, denoted $\operatorname{ker} \varphi$, is the relation \sim on S setting $a \sim b$ whenever $\varphi(a)=\varphi(b)$. Prove $\operatorname{ker} \varphi$ is a congruence on S.
(d) State and prove a version of the first isomorphism theorem for semigroups.
(H2) Fix a field \mathbb{k}, and let $R=\mathbb{k}\left[x_{1}, \ldots, x_{k}\right]$. In what follows, for $a \in \mathbb{Z}_{\geq 0}^{k}$, we use the shorthand

$$
x^{a}=x_{1}^{a_{1}} \cdots x_{k}^{a_{k}}
$$

A (unital) binomial is a polynomial of the form $x^{a}-x^{b} \in R$ for some $a, b \in \mathbb{Z}_{\geq 0}^{k}$.
(a) Fix an ideal $I \subset R$. Define a relation \sim_{I} on $\mathbb{Z}_{\geq 0}^{k}$ by

$$
a \sim_{I} b \quad \text { whenever } \quad x^{a}-x^{b} \in I
$$

for $a, b \in \mathbb{Z}_{\geq 0}^{k}$. Prove that \sim_{I} is a congruence on $\mathbb{Z}_{\geq 0}^{k}$.
(b) Consider the semigroup homomorphism $\varphi: \mathbb{Z}_{\geq 0}^{3} \rightarrow \mathbb{Z}_{\geq 0}$ given by

$$
(a, b, c) \longmapsto 4 a+5 b+6 c .
$$

Locate an ideal $I \subset \mathbb{k}[x, y, z]$ such that $\sim_{I}=\operatorname{ker} \varphi$. Find a finite generating set for I.
(c) Consider the semigroup homomorphism $\varphi: \mathbb{Z}_{\geq 0}^{5} \rightarrow \mathbb{Z}_{\geq 0}$ given by

$$
\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \longmapsto 15 a_{1}+97 a_{2}+152 a_{3}+153 a_{4}+201 a_{5}
$$

Locate an ideal $I \subset \mathbb{k}\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]$ such that $\sim_{I}=\operatorname{ker} \varphi$.
Hint: do not attempt to write down generators for I ! Instead, specify I as the kernel of a carefully chosen ring homomorphism.
(H3) Determine whether each of the following statements is true or false. Prove your assertions.
(a) For any $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{Z}_{\geq 0}^{d}$ with $d \geq 2$, the set $\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle \backslash\left\langle\alpha_{1}, \ldots, \alpha_{k-1}\right\rangle$ is infinite.
(b) Given any congruence \sim on $\mathbb{Z}_{\geq 0}^{k}$, the semigroup $S=\mathbb{Z}_{\geq 0}^{k} / \sim$ is cancellative, that is, $a+c=b+c$ implies $a=b$ for all $a, b, c \in S$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Locate a commutative, cancellative semigroup S such that (i) S is finitely generated, (ii) $0 \in S$ is the only element of S with an inverse, and (iii) S is not isomorphic to any affine semigroup.

