Spring 2022, Math 621: Week 4 Problem Set Due: Thurday, February 24th, 2022 Graded Modules

Discussion problems. The problems below should be worked on in class.
(D1) Draw a staircase diagram for each of the following modules M over $R=\mathbb{k}[x, y]$.
(a) $M=R$
(b) $M=I$, where $I=\left\langle x^{3}, y^{2}\right\rangle \subseteq R$
(c) $M=R / I$, where $I=\left\langle x^{3}, y^{2}\right\rangle \subseteq R$
(d) $M=R / I$, where $I=\left\langle x^{3}-y^{2}\right\rangle \subseteq R$

Remember: monomials in I are represented differently from binomials in I !
(e) $M=R / I$, where $I=\left\langle x^{3}-y^{2}, y^{4}\right\rangle \subseteq R$
(f) $M=R \oplus R$
(g) $M=R \oplus(R / I)$, where $I=\left\langle x y^{2}\right\rangle \subseteq R$.
(h) $M=(R \oplus R) / N$, where $N=\left\langle x e_{1}-y e_{2}\right\rangle \subseteq R \oplus R$.
(here, $e_{1}=(1,0)$ and $e_{2}=(0,1)$ are the standard basis of $\left.R \oplus R\right)$
(i) $M=(R \oplus R) / N$, where $N=\left\langle x e_{1}-y e_{2}, x y^{2} e_{2}\right\rangle \subseteq R \oplus R$
(D2) Computing Hilbert functions. Let $R=\mathbb{k}[x, y]$, graded by total degree. Determine the Hilbert function of each of the following graded modules M. Your answer to each should be a (possibly piecewise) formula for $\mathcal{H}(M ; t)$ in terms of t.
(a) $M=I$, where $I=\left\langle x^{2} y\right\rangle \subseteq R$

What is the relationship between $\mathcal{H}(M ; t)$ and $\mathcal{H}(R ; t)$ in this example?
(b) $M=I$, where $I=\left\langle x^{2} y, x y^{2}\right\rangle \subseteq R$
(c) $M=R / I$, where $I=\left\langle x^{2} y, x y^{2}\right\rangle \subseteq R$
(d) $M=R \oplus(R / I)$, where $I=\left\langle x^{2}+x y+y^{2}\right\rangle \subseteq R$
(e) $M=(R \oplus R) / N$, where $N=\left\langle x^{2} e_{1}-x y e_{1}, x y e_{2}-y^{2} e_{2}\right\rangle \subseteq R \oplus R$
(f) $M=(R \oplus R) / N$, where $N=\left\langle x^{2} e_{1}-x y e_{2}, x y e_{1}-y^{2} e_{2}\right\rangle \subseteq R \oplus R$

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) For each function h below, find a graded ring R and a finitely generated graded module M over R with $\mathcal{H}(M ; t)=h(t)$ for all t in the domain of h.
(a) $h: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}_{\geq 0}$ given by $h(t)=5 t+7$
(b) $h: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}_{\geq 0}$ given by $h(t)=t^{2}$
(c) $h: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}_{\geq 0}$ given by

$$
h(t)= \begin{cases}t-7 & \text { if } t \geq 10 \\ 3 & \text { if } t=6 \\ 0 & \text { otherwise }\end{cases}
$$

(d) $h: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}_{\geq 0}$ given by

$$
h(t)= \begin{cases}t+1 & \text { if } t \equiv 0 \bmod 3 \\ 17 & \text { if } t \equiv 1 \bmod 3 \\ t+13 & \text { if } t \equiv 2 \bmod 3\end{cases}
$$

(e) $h: \mathbb{Z}_{\geq 0}^{2} \rightarrow \mathbb{Z}_{\geq 0}$ given by

$$
h\left(t_{1}, t_{2}\right)= \begin{cases}2 & \text { if } t_{1}=0 \text { or } t_{2}=0 \\ t_{1}+t_{2} & \text { otherwise }\end{cases}
$$

(H2) Determine whether each of the following statements is true or false. Prove your assertions.
(a) Any function $h: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}_{\geq 0}$ occurs as the Hilbert function of some graded module over a polynomial ring.
(b) Any function $h: \mathbb{Z}_{\geq 0} \rightarrow \mathbb{Z}_{\geq 0}$ occurs as the Hilbert function of some finitely generated graded module over a polynomial ring.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Prove or disprove: there exists a finitely generated, graded module M over $R=\mathbb{k}[x, y, z, w]$ (under the standard grading) such that $\mathcal{H}(M ; t)=t^{3}$.

