Spring 2022, Math 621: Week 8 Problem Set
 Due: Thursday, March 24th, 2022
 Hilbert Series and Hilbert's Theorem

Discussion problems. The problems below should be worked on in class.
(D1) Ehrhart from Hilbert. The goal of this problem is to link Ehrhart's theorem and Hilbert's.
(a) As is always strongly suggested, we begin with an example. Let $C \subset \mathbb{R}_{\geq 0}^{3}$ denote the cone over the simplex $P=\operatorname{conv}\{(0,0),(2,1),(3,2),(0,3)\}$, and let $S=\bar{C} \cap \mathbb{Z}^{3}$ denote the associated semigroup.
(b) Draw $P, 2 P$, and $3 P$. List a few integer points in each corresponding slice of C.
(c) Find all 9 minimal generators of S.
(d) Applying Hilbert's theorem to $\mathbb{k}[S] \subset \mathbb{k}[x, y, z]$ under the fine grading, what form do we obtain for $\operatorname{Hilb}\left(\mathbb{k}[S] ; z_{1}, z_{2}, z_{3}\right)$ without computing a precise numerator?
(e) What grading should we choose in the previous part to instead obtain $\operatorname{Ehr}(P ; z)$?
(f) Explain why $\mathbb{k}[x, y, z]$ is a module over $\mathbb{k}[S]$. Is it finitely generated?
(g) Explain why $M=\mathbb{k}[S]$ is a module over $R=\mathbb{k}\left[z, x^{2} y z, x^{3} y^{2} z, y^{3} z\right]$, and find all 7 minimal homogeneous generators of M (as an R-module).
(h) Apply Hilbert's theorem to the module M. What does this tell us about the rational form of the Ehrhart series of P ?
(D2) Hilbert series of monomial ideals.
(a) Find $\operatorname{Hilb}\left(M ; z_{1}, z_{2}\right)$ for each of the finely-graded modules M over $R=\mathbb{k}[x, y]$ below.
(i) $M=I$, where $I=\left\langle x y^{2}\right\rangle$
(ii) $M=I$, where $I=\left\langle x^{3}, x y^{2}, y^{4}\right\rangle$
(iii) $M=R / I$, where $I=\left\langle x^{3}, x y^{2}, y^{4}\right\rangle$
(iv) $M=R / I$, where $I=\left\langle x^{4}, x^{3} y, x^{2} y^{2}, y^{4}\right\rangle$
(b) Find $\operatorname{Hilb}(M ; z)$ for each of the above modules M (under the standard grading).
(c) Conjecture a closed form for $\operatorname{Hilb}\left(R / I ; z_{1}, z_{2}\right)$, where

$$
I=\left\langle x^{a_{1}} y^{b_{1}}, \ldots, x^{a_{k}} y^{b_{k}}\right\rangle \subset R=\mathbb{k}[x, y]
$$

is a monomial ideal with $a_{1}>\cdots>a_{k}$ and $b_{1}<\cdots<b_{k}$.
(d) Locate a monomial ideal $I \subset \mathbb{k}[x, y]$ for which, under the standard grading,

$$
\operatorname{Hilb}(I ; z)=\frac{3 z^{5}-z^{6}+z^{7}-2 z^{8}}{(1-z)^{2}}
$$

(e) Find $\operatorname{Hilb}\left(R / I ; z_{1}, z_{2}, z_{3}\right)$, where $I=\left\langle x^{2}, y^{2}, z^{2}, x y z\right\rangle \subset R=\mathbb{k}[x, y, z]$.

Hint: draw the staircase diagram (yes, in 3D).
(f) Locate a monomial ideal $I \subset \mathbb{k}\left[x_{1}, x_{2}, x_{3}\right]$ for which, under the standard grading,

$$
\operatorname{Hilb}(I ; z)=\frac{6 z^{2}-8 z^{3}+3 z^{4}}{(1-z)^{3}}
$$

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Locate a single graded ring R and finitely generated R-modules M_{1}, M_{2}, and M_{3} with the Hilbert series specified below.
(a) $\operatorname{Hilb}\left(M_{1} ; z\right)=\frac{1}{\left(1-z^{3}\right)\left(1-z^{5}\right)}$
(b) $\operatorname{Hilb}\left(M_{2} ; z\right)=\frac{z^{5}+3 z^{7}}{\left(1-z^{2}\right)\left(1-z^{3}\right)^{2}}$
(c) $\operatorname{Hilb}\left(M_{3} ; z\right)=\frac{2 z^{5}-z^{7}}{\left(1-z^{2}\right)\left(1-z^{3}\right)}$
(H2) Fix a rational polyhedron R, and for simplicity, assume $R \subset \mathbb{R}_{\geq 0}^{d}$. It is known that $R=P+C$ for some rational polytope $P \subset \mathbb{R}_{\geq 0}^{d}$ and some rational cone $C \subset \mathbb{R}_{\geq 0}^{d}$. Use this fact to prove the multivariate generating function of R satisfies

$$
\sum_{p \in R \cap \mathbb{Z}^{d}} z^{p}=\frac{h(z)}{\left(1-z^{r_{1}}\right) \cdots\left(1-z^{r_{k}}\right)}
$$

for some polynomial $h(z)$ and some $r_{1}, \ldots, r_{k} \in \mathbb{Z}_{\geq 0}^{d}$.
(H3) The Hilbert series of a numerical semigroup $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle \subset \mathbb{Z}_{\geq 0}$ is

$$
\operatorname{Hilb}(S ; z)=\sum_{a \in S} z^{a}
$$

(a) Prove using Hilbert's Theorem that

$$
\operatorname{Hilb}(S ; z)=\frac{g(z)}{\left(1-z^{n_{1}}\right) \cdots\left(1-z^{n_{k}}\right)}
$$

for some polynomial $g(z)$.
(b) Fix $m \in S$. Prove that

$$
\operatorname{Hilb}(S ; z)=\frac{a(z)}{1-z^{m}}
$$

for some polynomial $a(z)$ with positive integer coefficients.
(H4) Determine whether each of the following statements is true or false. Prove your assertions.
(a) If $I \subset R=\mathbb{k}\left[x_{1}, \ldots, x_{k}\right]$ is a monomial ideal, and we write

$$
\operatorname{Hilb}\left(R / I ; z_{1}, \ldots, z_{k}\right)=\frac{h\left(z_{1}, \ldots, z_{k}\right)}{\left(1-z_{1}\right) \cdots\left(1-z_{k}\right)} \quad \text { and } \quad \operatorname{Hilb}(R / I ; z)=\frac{g(z)}{(1-z)^{k}}
$$

with respect to the fine grading and the standard grading, respectively, then h and g have the same number of nonzero terms.
(b) There exists a monomial ideal $I \subset \mathbb{k}\left[x_{1}, x_{2}, x_{3}\right]$ such that, under the standard grading,

$$
\operatorname{Hilb}(I ; z)=\frac{3 z^{6}-4 z^{9}+z^{11}}{(1-z)^{3}}
$$

