Spring 2022, Math 621: Week 10 Problem Set
 Due: Thursday, April 14th, 2022

 Gröbner Bases

 Gröbner Bases}

Discussion problems. The problems below should be worked on in class.
(D1) Gröbner bases of modules. Let $R=\mathbb{k}\left[x_{1}, \ldots, x_{k}\right]$, and let e_{1}, \ldots, e_{n} are the standard basis vectors of the free module R^{n}. The goal of this problem is to extend the concept of a Gröbner basis from ideals in R to submodules of R^{n}.
(a) Recall that a monomial in R^{n} is an element of the form $x^{a} e_{i}$ (that is, a monomial in R times a standard basis vector of R^{n}). Decide what it means for $x^{a} e_{i}$ to divide $x^{b} e_{j}$.
(b) Given a term order \preceq on R, define the position-over-term (POT) order $\preceq_{\text {pot }}$ on R^{n} so $x^{a} e_{i} \preceq_{\text {pot }} x^{b} e_{j}$ whenever (i) $i>j$ or (ii) $i=j$ and $x^{a} \preceq x^{b}$. Find the initial terms of $m=x^{4} y e_{1}+x^{3} y^{3} e_{1}+y^{2} e_{1}+x^{4} y e_{2}+x y^{3} e_{2} \quad$ and $\quad m^{\prime}=x y e_{1}-x^{3} e_{2}$
under pot-glex order, and use the division algorithm to divide m by m^{\prime}.
(c) Given a term order \prec on R, define the term-over-position (TOP) order $\preceq_{\text {top }}$ on R^{n} so $x^{a} e_{i} \preceq_{\text {top }} x^{b} e_{j}$ whenever (i) $x^{a} \preceq x^{b}$, or (ii) $x^{a}=x^{b}$ and $i>j$. Find the initial terms of m and m^{\prime} from the previous part under top-glex order, and use the division algorithm to divide m by m^{\prime}.
(d) Using the above as intuition, decide on a reasonable definition of a term order \prec on R^{n}.
(e) Give a reasonable definition of a Gröbner basis m_{1}, \ldots, m_{r} of a submodule $M \subset R^{n}$ with respect to a given term order \preceq on R^{n}.
(f) Identify a reasonable element in R^{2} to serve as the sygyzgy

$$
S\left(x^{2} y e_{1}+x^{5} e_{2}, y^{3} e_{1}+x^{2} e_{2}-y e_{2}\right)
$$

under the pot-glex order. Is there a reasonable choice for $S\left(x^{2} e_{1}+y e_{2}, y^{2} e_{2}+x e_{2}\right)$? Use your intuition to carefully define the syzygy element $S\left(m, m^{\prime}\right)$, keep in mind that we want the following theorem to hold.
Theorem. A list of elements m_{1}, \ldots, m_{r} is a Gröbner basis for $M \subset R^{n}$ if and only if division of each syzygy $S\left(m_{i}, m_{j}\right)$ by m_{1}, \ldots, m_{r} yields remainder 0.
(g) Compute a Gröbner basis for the submodule

$$
M=\left\langle x^{2} e_{1}-y^{2} e_{1}, x y e_{1}-y e_{2}\right\rangle \subseteq R^{2}
$$

under the pot-glex term order.
(D2) Reduced Gröbner bases. Fix an ideal $I \subseteq R=\mathbb{k}\left[x_{1}, \ldots, x_{k}\right]$ and a term order \preceq.
(a) Argue that if g_{1}, \ldots, g_{r} is a Gröbner basis for an ideal I, and g_{r}^{\prime} is the remainder after dividing g_{r} by g_{1}, \ldots, g_{r-1}, then $g_{1}, \ldots, g_{r-1}, g_{r}^{\prime}$ is also a Gröbner basis for I.
(b) A Gröbner basis G is called reduced if (i) for all $g_{i}, g_{j} \in G$, no term of g_{i} is divisible by the leading term of g_{j}, and (ii) the coefficient of each leading term is 1. Use the previous part to find a reduced Gröbner basis for the ideal

$$
J=\left\langle x^{3}-y^{2}, x^{4} y^{4}-z^{3}, x y^{6}-z^{3}, y^{8}-x^{2} z^{3}\right\rangle \subseteq \mathbb{k}[x, y, z]
$$

under glex order. You may assume the given generating set is a Gröbner basis (it is).
(c) The initial ideal of an ideal I under \preceq is the monomial ideal

$$
\operatorname{In}_{\preceq}(I)=\left\langle\operatorname{In}_{\preceq}(f): f \in I\right\rangle
$$

generated by the initial terms of every element of I. Argue that $G=\left\{g_{1}, \ldots, g_{r}\right\}$ is a Gröbner basis for I under \preceq if and only if we have $\operatorname{In}_{\preceq}(I)=\left\langle\operatorname{In}_{\preceq}\left(g_{1}\right), \ldots, \operatorname{In}_{\preceq}\left(g_{r}\right)\right\rangle$.
(d) Using the previous part, characterize the minimal generating set of $\operatorname{In}_{\preceq}(I)$ in terms of a reduced Gröbner basis for I.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Use Buchberger's algorithm to obtain a reduced Gröbner basis for

$$
I=\left\langle x^{3}-w y^{2}, x^{10}-w^{7} z^{3}\right\rangle \subseteq \mathbb{k}[x, y, z, w]
$$

under the grevlex term order.
(H2) Argue that if I is a binomial ideal (i.e., I can be generated by differences of monomials) and \preceq is any term order, then the reduced Gröbner basis of I with respect to \preceq is comprised entirely of binomials.
Then, determine whether the ideal

$$
I=\left\langle x^{2}-y^{2}, x^{3} y^{4}-x y^{6}+x^{3} y, x^{4} y^{3}-x^{2} y^{5}+x y^{3}\right\rangle \subseteq \mathbb{k}[x, y, z]
$$

can be generated by binomials.
(H3) Do (at least) one of the following.
(a) Fix an ideal $I \subseteq \mathbb{k}\left[x_{1}, \ldots, x_{k}\right]$ and a term order \preceq. Prove that I has a unique reduced Gröbner basis under \preceq.
(b) Fix an ideal $I \subseteq \mathbb{k}\left[x_{1}, \ldots, x_{k}\right]$, let \preceq denote the lex term order with $x_{1} \preceq \cdots \preceq x_{k}$, and let G denote a Gröbner basis for I. Prove that $G^{\prime}=G \cap \mathbb{k}\left[x_{2}, \ldots, x_{k}\right]$ is a Gröbner basis for $I^{\prime}=I \cap \mathbb{k}\left[x_{2}, \ldots, x_{k}\right]$ with respect to \preceq (this is called elimination). Does the same hold if \preceq is the glex term order?
(c) Prove that for any homogenous ideal $I \subseteq \mathbb{k}\left[x_{1}, \ldots, x_{k}\right]$ under the standard grading and any term order \preceq, we have

$$
\operatorname{Hilb}(R / I ; z)=\operatorname{Hilb}\left(R / \operatorname{In}_{\prec}(I) ; z\right)
$$

Does the same necessarily hold if we use a grading other than the standard grading?
(H4) Determine whether each of the following statements is true or false. Prove your assertions.
(a) Under any term order \preceq on $\mathbb{k}\left[x_{1}, \ldots, x_{k}\right]$, for each variable x_{i} there are only finitely many monomials x^{a} such that $x^{a} \preceq x_{i}$.
(b) Reverse lexicographic order, defined in the same manner as the grevlex term order but without the initial "total degree" comparison, is a term order.
(c) For $R=\mathbb{k}[x, y]$, the given generating set for the submodule

$$
\left\langle(x y+4 x) e_{1}+x^{2} e_{3},(y-1) e_{2}+(x-2) e_{3}\right\rangle \subseteq R^{3}
$$

is a Gröbner basis under both the pot-lex term order and the top-lex term order.

