Spring 2022, Math 621: Week 12 Problem Set
 Due: Thursday, April 28th, 2022
 Free Resolutions and the Hilbert Syzygy Theorem

Discussion problems. The problems below should be worked on in class.
(D1) Existence of free resolutions. Throughout this problem, unless otherwise stated, R is any ring, and modules over R need not be finitely generated.
(a) Suppose $R=\mathbb{k}[x, y]$ and $M=R /\left\langle x^{2}-x y, x y^{2}-y^{3}\right\rangle$. Find a free resolution for M.
(b) Argue that the sequence $0 \rightarrow M \xrightarrow{\varphi} N$ is exact if and only if φ is injective. State and prove analogous results concerning (i) an exact sequence $M \xrightarrow{\varphi} N \rightarrow 0$, and (ii) an exact sequence $0 \rightarrow M \xrightarrow{\varphi} N \rightarrow 0$.
(c) A short exact sequence is an exact sequence of the form $0 \rightarrow K \rightarrow M \xrightarrow{\varphi} N \rightarrow 0$. Prove that $K \cong \operatorname{ker} \varphi$ and $N \cong M / \operatorname{ker} \varphi$ in any such sequence.
(d) Given below is a proof that for any ring R, any R-module M has a free resolution. Augment the proof to show that if R is Noetherian and M is a finitely generated R-module, then we can pick the free modules F_{i} to have finite rank.

Proof. Pick any generating set $G \subset M$ for M (at worst, we could choose $G=M$). Let $F_{0}=\bigoplus_{g \in G} R$, and begin the free resolution for M with $0 \leftarrow M \stackrel{\varphi_{0}}{\leftrightarrows} F_{0}$ using the surjective homomorphism $\varphi_{0}: F_{0} \rightarrow M$ defined by sending $\mathbf{e}_{g} \mapsto g$ for each $g \in G$. Inductively, suppose

$$
0 \leftarrow M \stackrel{\varphi_{0}}{\leftrightarrows} F_{0} \stackrel{\varphi_{1}}{\leftrightarrows} \cdots \stackrel{\varphi_{j}}{\leftrightarrows} F_{j}
$$

is exact. As before, choose a generating set G for $\operatorname{ker} \varphi_{j} \subset F_{j}$, let $F_{j+1}=\bigoplus_{g \in G} R$, and define $\varphi_{j+1}: F_{j+1} \rightarrow F_{j}$ by $\mathbf{e}_{g} \mapsto g$ for each $g \in G$. This yields exactness at F_{j} and thus, by induction, the desired free resolution.
(D2) Graded free resolutions. Suppose $R=\mathbb{k}\left[x_{1}, \ldots, x_{k}\right]$ is $\mathbb{Z}_{>0}^{d}$-graded, and fix graded R modules M and N. We say a map $\varphi: M \rightarrow N$ is graded if $\operatorname{deg}(f)=\operatorname{deg}(\varphi(f))$ for every homogeneous $f \in M$.
(a) Prove if φ is graded, then $\operatorname{ker} \varphi$ is a homogeneous submodule of M.
(b) Retrace through the proof in Problem (D1)(d). Conclude that every graded module M over a graded ring R has a free resolution in which each F_{i} and each φ_{i} is graded (we say such a free resolution is graded).
(c) The ideal in Problem (D1)(a) is homogeneous under the standard grading, but technically the free resolution we constructed is not graded. Why?
(d) Let's resolve this issue (pun intended). Find a free resolution of $\left\langle x^{2} y\right\rangle \subset \mathbb{k}[x, y]$. What degree must each monomial in $F_{0}=R$ have for this resolution to be graded under the standard grading?
(e) The grading of F_{0} in the previous problem is called a shifted grading, where we effectively "translate" the grading by some amount. Notationally, we write $R(a)$ to indicate that $\operatorname{deg}\left(x^{b}\right)+a$ is the original degree of $x^{b} \in R$. Determine the value of a so that

$$
0 \longleftarrow\left\langle x^{2} y\right\rangle \longleftarrow R(a) \longleftarrow 0
$$

is a (standard) graded free resolution (be careful!).
(f) Returning to the free resolution constructed in Problem (D1)(a), identify the appropriate graded shift of each summand of each F_{i}, and verify that with those choices, the resolutions are graded. Do the same with each free resolution from Tuesday's class.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) For each of the following rings R and R-modules M, find a (minimal) graded free resolution of M. Be sure to argue as best you can that the image of each map indeed equals the kernel of the next!
(a) $R=\mathbb{k}[x, y]$ and $M=R /\left\langle x^{3}, y^{3}, x^{2} y-x y^{2}\right\rangle$, under the standard grading.
(b) $R=\mathbb{k}[x, y, z] /\langle x y, x z, y z\rangle$ and $M=R /\langle x\rangle$, under the fine grading.
(H2) Given a graded R-module M, the graded Betti number $\beta_{i, a}(M)$ equals the number of summands of $R(-a)$ appearing in F_{i} in a minimal graded free resolution

$$
0 \leftarrow M \stackrel{\varphi_{0}}{\longleftarrow} F_{0} \stackrel{\varphi_{1}}{\leftrightarrows} F_{1} \stackrel{\varphi_{2}}{\leftrightarrows} \cdots
$$

for M (recall that in a minimal graded free resolution, the matrices defining the maps φ_{i} have no nonzero constant entries).
Suppose $I \subseteq R=\mathbb{k}[x, y]$ is a monomial ideal. Obtain a minimal free resolution for R / I, and characterize the (finely) graded Betti numbers in terms of the staircase diagram of I.
(H3) Fix a field \mathbb{k} and an exact sequence

$$
0 \longleftarrow V_{0} \longleftarrow V_{1} \longleftarrow \cdots \longleftarrow V_{\ell} \longleftarrow 0
$$

of finite dimensional vector spaces over \mathbb{k}. Prove that

$$
\sum_{i=0}^{\ell}(-1)^{i} \operatorname{dim}\left(V_{i}\right)=0
$$

Hint: as with most good linear algebra results, the rank-nullity theorem is key!

