Spring 2022, Math 621: Week 13 Problem Set Proving Hilbert's Theorem

Discussion problems. The problems below should be worked on in class.

(D1) The Hilbert Syzygy Theorem. Let $R = \mathbb{K}[x_1, \ldots, x_k]$. Our goal is to prove the following.

Theorem (Hilbert Syzygy Theorem). Every finitely generated R-module M has a free resolution of length at most k, one that is graded if M is graded.

(a) Given an R-module $M = \langle f_1, \ldots, f_r \rangle$, the syzygy module is a submodule of R^r given by

$$Syz(f_1, ..., f_r) = \{(a_1, ..., a_r) \in R^r : a_1f_1 + \dots + a_rf_r = 0\} \subseteq R^r.$$

Verify that $\operatorname{Syz}(f_1, \ldots, f_r) = \ker \varphi$, where $\varphi : \mathbb{R}^r \to M$ is given by $\mathbf{e}_i \mapsto f_i$. Note that the syzygy module depends on the choice of **generating set** for M!

- (b) Locate the module $Syz(x^4, x^2y^2, xy^3)$ in the free resolution from lecture.
- (c) Fix a Gröbner basis g_1, \ldots, g_r for M with respect to some term order \preceq . Fixing i, j, Buchberger's criterion implies we can write

$$S(g_i, g_j) = a_1 g_1 + \dots + a_r g_r$$
 for some $a_1, \dots, a_r \in \mathbb{R}^r$.

Letting $L = \operatorname{lcm}(\operatorname{In}_{\prec}(g_i), \operatorname{In}_{\prec}(g_j))$, define

$$s_{ij} = \frac{L}{\operatorname{In}_{\preceq}(g_i)} \mathbf{e}_i - \frac{L}{\operatorname{In}_{\preceq}(g_j)} \mathbf{e}_j - a_1 \mathbf{e}_1 - \dots - a_r \mathbf{e}_r \in R^r.$$

Verify that $s_{ij} \in \text{Syz}(g_1, \ldots, g_r)$.

(d) Let $J = \langle x^2 - y^2, xy^3 - x^2y, y^5 - x^3y \rangle$. Read Schreyer's Theorem, then use it to find a free resolution for J. Hint: the given generating set for J is a glex Gröbner basis.

Theorem (Schreyer). Given a Gröbner basis $G = \{g_1, \ldots, g_r\}$ for M under any term order \leq , the elements s_{ij} form a Gröbner basis for $\operatorname{Syz}(g_1, \ldots, g_r)$ under a new term order \leq_G defined as follows: set $x^a \mathbf{e}_i \leq_G x^b \mathbf{e}_j$ whenever

(i) $\operatorname{In}_{\preceq}(x^a g_i) \preceq \operatorname{In}_{\preceq}(x^b g_j); or$ (ii) $\operatorname{In}_{\prec}(x^a g_i) = \operatorname{In}_{\prec}(x^b g_i) \text{ and } i >$

(ii)
$$\ln_{\preceq}(x^a g_i) = \ln_{\preceq}(x^b g_j)$$
 and $i \ge j$

In particular, $\operatorname{Syz}(g_1, \ldots, g_r) = \langle s_{ij} : 1 \leq i, j \leq r \rangle$.

- (e) We will now prove the Hilbert Syzygy Theorem by arguing that the free resolution resulting from Schreyer's Theorem has length at most k.
 - (i) Suppose g₁,..., g_r is a Gröbner basis for M under some term order ≤, and that In_≤(g₁),..., In_≤(g_r) are in decreasing top-lex order. Argue that if for some m < k, the variables x₁,..., x_m are absent from each In_≤(g_i), then the variables x₁,..., x_{m+1} are absent from each In_≤(s_{ij}).
 - (ii) By induction and the previous part, decide what we can conclude for some $\ell < k$ about the initial terms in the resulting Gröbner basis h_1, \ldots, h_r for ker φ_ℓ in

$$0 \leftarrow M \xleftarrow{\varphi_0} F_0 \xleftarrow{\varphi_1} F_1 \xleftarrow{\varphi_2} \cdots \xleftarrow{\varphi_\ell} F_\ell$$

(iii) Prove that $Syz(h_1, \ldots, h_r) = 0$. Conclude that the Hilbert syzygy theorem holds.

(f) Argue that if $M \subseteq \mathbb{R}^n$ is a graded \mathbb{R} -module, and $g_1, \ldots, g_r \in M$ form a homogeneous Gröbner basis for M, then each $s_{ij} \in \text{Syz}$ is homogeneous as well. Conclude that Schreyer's Theorem yields a graded free resolution if M is graded.

(D2) Hilbert's Theorem. We are finally ready to prove Hilbert's theorem, once and for all.

Theorem (Hilbert). Fix a finitely generated \Bbbk -algebra R, graded by $\mathbb{Z}^d_{\geq 0}$, with homogeneous generators $y_1, \ldots, y_k \in R$ of degrees r_1, \ldots, r_k , respectively, and fix a finitely generated graded R-module M. The Hilbert series of M has the form

$$Hilb(M; z) = \frac{h(z)}{(1 - z^{r_1}) \cdots (1 - z^{r_k})}$$

for some polynomial h(z) with integer coefficients.

- (a) Argue that for some $\mathbb{Z}_{\geq 0}^d$ -grading on $T = \Bbbk[x_1, \ldots, x_k]$ and some homogeneous ideal I, we have $R \cong T/I$ as graded rings. Note: you must specify I and the grading on T!
- (b) Argue that M is a graded T-module.
- (c) Argue that M has a graded free resolution of the form

$$0 \longleftarrow M \longleftarrow F_0 \longleftarrow F_1 \longleftarrow \cdots \longleftarrow F_k \longleftarrow 0$$

where each F_i is a free *T*-module.

(d) Use a homework problem from last week to argue that

$$\operatorname{Hilb}(M; z) = \sum_{i=0}^{k} (-1)^{k} \operatorname{Hilb}(F_{i}; z).$$

(e) Explain why

$$Hilb(T; z) = \frac{1}{(1 - z^{r_1}) \cdots (1 - z^{r_k})}$$

Is it true that $\operatorname{Hilb}(R; z) = \operatorname{Hilb}(T; z)$?

(f) Conclude that Hilbert's theorem holds, and breathe a sign of relief knowing that your life is finally complete.