Spring 2022, Math 579: Week 0 Problem Set
 Due: Thurday, January 26th, 2023
 Proof Writing Review

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Fix n, and suppose $A, B \subset\{1,2, \ldots, n\}$. Prove that $A \cap B=A \cup B$ if and only if $A=B$.
(H2) Suppose $a_{0}=0, a_{1}=1$, and for all $n \geq 2, a_{n}=a_{n-1}+a_{n-2}$. Use induction to prove

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

for all $n \geq 0$.
(H3) Locate and correct the error in the following proof that for any $n \in \mathbb{Z}_{\geq 0}$, there exist $q, r \in \mathbb{Z}_{\geq 0}$ with $0 \leq r \leq 5$ such that $n=6 q+r$.

Proof. Let $P(n)$ denote the following statement:
"There exist $q, r \in \mathbb{Z}_{\geq 0}$ with $0 \leq r \leq 5$ such that $n=6 q+r$."
We proceed by induction on n.
Base cases: suppose $n=0,1,2,3,4$, or 5 . Choosing $q=0$ and $r=n$, we see $6 q+r=n$. This proves $P(0), P(1), P(2), P(3), P(4)$, and $P(5)$.
Inductive step: supposing $n \geq 6$ and that $P(n-6)$ holds (the inductive hypothesis), we wish to prove $P(n)$ holds. Since $P(n-6)$ holds,

$$
n-6=6 q^{\prime}+r^{\prime}
$$

for some $q^{\prime}, r^{\prime} \in \mathbb{Z}$ with $0 \leq r^{\prime} \leq 5$. Rearranging yields

$$
n=6\left(q^{\prime}+1\right)+r^{\prime}
$$

and choosing $q=q^{\prime}+1$ and $r=r^{\prime}+1$ completes the proof that $P(n)$ holds.
(H4) Determine whether each of the following statements is true or false. Prove your claims.
(a) The function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=9 x^{2}-6 x+1$ is injective (one-to-one).
(b) The function $f: \mathbb{Z} \rightarrow \mathbb{R}$ given by $f(x)=9 x^{2}-6 x+1$ is injective (one-to-one).
(H5) Let $D=\left\{(a, b): a, b \in \mathbb{Z}_{\geq 0}\right\}$. Prove that the function $f: D \rightarrow \mathbb{Z}_{\geq 0}$ given by

$$
f(a, b)=\frac{1}{2}(a+b)(a+b+1)+a
$$

is a bijection (that is, f is one-to-one and onto).

