Spring 2023, Math 579: Week 2 Problem Set Due: Thursday, February 9th, 2023 Pigeon-hole Principle and Inclusion-Exclusion

Discussion problems. The problems below should be worked on in class.
(D1) Using the pigeon-hole principle.
Solve each of the following problems using the pigeon-hole principle. Be sure to specify what your boxes and pigeons represent.
(a) Suppose 9 integers are selected at random. Prove that at least 5 have the same parity (even or odd). Is the same true if only 8 integers are selected?
(b) If 10 points are chosen inside of a unit square, then there are two points with a distance at most 0.5 apart.
(c) If 10 points are chosen inside of a unit square, then atleast three points can be covered by a disk of radius 0.5.
(D2) Applications of Inclusion-Exclusion. Recall the Sieve formula:

$$
\left|A_{1} \cup \cdots \cup A_{n}\right|=\sum_{\substack{T \subseteq[n] \\ T \neq \emptyset}}(-1)^{|T|+1}\left|\bigcap_{j \in T} A_{j}\right|
$$

(a) Write out the Sieve formula without sigma sums or big intersections for $n=3$.
(b) How many positive integers less than 100 are divisible by either 2 or 3 ?
(c) How many 3 -digit positive integers are divisible by 6,7 , or 8 ? Clearly label A_{1}, A_{2}, A_{3}.
(d) In part (c), for which sets T in the Sieve formula does 24 appear in $\bigcap_{j \in T} A_{j}$?
(e) How many functions $f:[5] \rightarrow[3]$ are surjective? What about surjections $f:[27] \rightarrow[4]$?

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) How many ways can we arrange the characters $3,3,4,4,5,6,7$ so that no two consecutive digits are identical?
(H2) Find $\phi(210)$, where $\phi(n)$ denote the number of elements of [n] relatively prime to n.
Hint: $210=2 \cdot 3 \cdot 5 \cdot 7$.
(H3) Prove that among 1002 positive integers, there are always two integers whose sum or difference is a multiple of 2000 .
(H4) Suppose every point in \mathbb{N}^{2} is colored using one of 8 colors.
(a) Prove that there exists a rectangle whose vertices are monochromatic.
(b) Suppose \mathbb{N}^{2} is colored using one of r colors, where $r>0$. For which values of r does part (a) still hold?

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Suppose the function $g: \mathbb{Z}_{\geq 1} \rightarrow \mathbb{Z}$ satisfies $g(1)=1$ and

$$
\sum_{d \mid n} g(d)=0
$$

for all $n \geq 2$. Find a closed form for $g(n)$ (your answer may use cases, but not sums).

