Spring 2024, Math 579: Week 0 Problem Set Due: Thursday, January 24th, 2024 Proof Writing Review

Homework problems. You must submit *all* homework problems in order to receive full credit.

- (H1) Fix n, and suppose $A, B \subset \{1, 2, ..., n\}$. Prove that $A \cap B = A \cup B$ if and only if A = B.
- (H2) Suppose $a_0 = 0$, $a_1 = 1$, and for all $n \ge 2$, $a_n = a_{n-1} + a_{n-2}$. Use induction to prove

$$a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n$$

for all $n \ge 0$.

(H3) Locate and correct the **error** in the following proof that for any $n \in \mathbb{Z}_{\geq 0}$, there exist $q, r \in \mathbb{Z}_{\geq 0}$ with $0 \leq r \leq 5$ such that n = 6q + r.

Proof. Let P(n) denote the following statement:

"There exist $q, r \in \mathbb{Z}_{>0}$ with $0 \le r \le 5$ such that n = 6q + r."

We proceed by induction on n.

Base cases: suppose n = 0, 1, 2, 3, 4, or 5. Choosing q = 0 and r = n, we see 6q + r = n. This proves P(0), P(1), P(2), P(3), P(4), and P(5).

Inductive step: supposing $n \ge 6$ and that P(n-6) holds (the *inductive hypothesis*), we wish to prove P(n) holds. Since P(n-6) holds,

n-6 = 6q' + r'

for some $q', r' \in \mathbb{Z}$ with $0 \leq r' \leq 5$. Rearranging yields

$$n = 6(q'+1) + r',$$

and choosing q = q' + 1 and r = r' + 1 completes the proof that P(n) holds.

- (H4) Determine whether each of the following statements is true or false. Prove your claims (your argument should **not** involve graphs of functions).
 - (a) The function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = 9x^2 6x + 1$ is injective (one-to-one).
 - (b) The function $f : \mathbb{Z} \to \mathbb{R}$ given by $f(x) = 9x^2 6x + 1$ is injective (one-to-one).
- (H5) Let $D = \{(a, b) : a, b \in \mathbb{Z}_{\geq 0}\}$, and consider the function $f : D \to \mathbb{Z}_{\geq 0}$ given by

$$f(a,b) = \frac{1}{2}(a+b)(a+b+1) + a.$$

- (a) On the xy-plane, mark each point $(a, b) \in D$ with $a + b \leq 6$ with a large dot, and label each dot with the number f(a, b). What do you notice about the labels?
- (b) Prove that for each $n \in \mathbb{Z}_{\geq 0}$, there exist $(a, b) \in D$ with f(a, b) = n. Hint: use induction on n.
- (c) Prove that if $(a, b), (a', b') \in D$ and f(a, b) = f(a', b'), then a = a' and b = b'. Hint: consider the cases a + b = a' + b' and a + b < a' + b' separately.
- (d) What do parts (b) and (c) allow us to conclude about f?