## Spring 2024, Math 579: Week 1 Problem Set <br> Due: Thursday, February 1st, 2024 <br> Elementary Counting Methods

Discussion problems. The problems below should be worked on in class.
(D1) Counting practice.
(a) Find the number of ways to arrange the letters in the word MISSISSIPPI.
(b) Find the number of subsets of [7] with at least 3 elements.
(D2) Analyzing counting arguments. Each of the following proofs has an error. Locate the error, explain the issue, and correct the error.
(a) Find the number of ways to choose 3 distinct appetizers and 2 distinct desserts from a menu with 5 appetizers and 6 desserts.

Answer. For the appetizers: there are $\binom{5}{3}$ ways to choose 3 out of the 5 appetizers. For dessert: there are 6 choices for the first dessert and 5 choices for the second dessert, yielding $6 \cdot 5$ possibilities. As such, we obtain

$$
\binom{5}{3} \cdot 6 \cdot 5
$$

ways to place the full order.
(b) Find the number of ways to order 112345 so that the 1's are not adjacent.

Answer. First, we will count the total number of ways to order 112345. There are 6 ! ways to order 6 distinct symbols, but since ' 1 ' occurs twice, we must divide by 2 !. Next, we count the orderings where the 1's are adjacent. For this, we can treat ' 11 ' as a single symbol, yielding 5 ! orderings. As such, we obtain

$$
\frac{6!}{2!} / 5!
$$

total ways when the 1's are not adjacent.
(D3) Poker hands. Suppose you have a standard 52 card deck, with 4 suits (labeled spades, clubs, hearts, and diamonds) and 13 ranks (labeled 2 through 10, Jack, Queen, King, and Ace). Each card has one rank and one suit, and no two cards are identical.
(a) Determine the number of 5 -card poker hands that have each ranking:

- royal flush (ranks 10-A, all same suit);
- straight flush (sequential ranks, all same suit);
- 4 of a kind (4 cards have equal rank);
- full house ( 3 cards have equal rank, the other 2 also have equal rank);
- flush (all cards have the same suit);
- straight (cards have sequential ranks);
- 3 of a kind (3 cards have equal rank);
- 2 pair ( 2 cards have equal rank, 2 others also have equal rank);
- 1 pair (2 cards have equal rank); and
- high card (none of the above).

Each 5-card hand should fall under exactly one name (e.g., a 2 pair is not a pair).
(b) Verify (using a calculator) that the sum of all of your answers from part (a) yields the same number as in Preliminary Problem (P2)(a), and that hands with higher rankings occur less frequently.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Find the number of ways to arrange the letters in your full name (optionally including middle/second last names). For example, if your name were Emmy Noether, you would find the number of ways to arrange the letters EMMYNOETHER.
(H2) Determine the number of ways to place $n$ non-attacking rooks on an $n \times n$ chess board (a rook can move in a straight line up, down, left, and right).
(H3) In how many ways can we select two subsets $C, D \subseteq[n]$ such that $C \cap D=\emptyset$ ?
(H4) Suppose $b_{1}+\cdots+b_{m} \leq n$. Prove that $b_{1}!\cdots b_{m}!\leq n!$.
(H5) Let $P$ denote a convex $n$-sided polygon in which no 3 diagonals intersect in a single point. How many intersection points do the diagonals of $P$ have?
(H6) How many $n \times n$ square matrices are there whose entries are 0 's and 1 's and in which every row and column has an even sum?

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) How many non-attacking queens can be placed on an $n \times n$ chess board (queens can move in a straight line up, down, left, right, and diagonal)?

