Spring 2024, Math 579: Week 3 Problem Set
 Due: Thursday, February 15th, 2024
 Combinatorial Proofs

Discussion problems. The problems below should be worked on in class.
(D1) Combinatorial proofs.
(a) Compare your answers to the preliminary problems, and come to a concensus.
(b) Fill in the blanks in the following combinatorial proof that for any $n \geq 0$,

$$
\sum_{k=0}^{n} 2^{k}\binom{n}{k}=3^{n}
$$

Proof. We will count the number of ways to choose subsets $A, B \subseteq[n]$ with $A \subseteq B$.
First, for each $i \in[n]$, either $i \in A, i \in B \backslash A$, or \qquad . This yields 3^{n} possibilities.

Second, if we let $k=|B|$, then for each $k=0,1, \ldots, n$, there are \qquad choices for B, and \qquad ways to choose a subset $A \subseteq B$. This yields

$$
2^{0}\binom{n}{0}+2^{1}\binom{n}{1}+\cdots+2^{n}\binom{n}{n}=\sum_{k=0}^{n} 2^{k}\binom{n}{k}
$$

possibilities. We conclude the claimed identity must hold.
(c) In the proof of the previous part, replace " $A, B \subseteq[n]$ with $A \subseteq B$ " in the first line with " $C, D \subseteq[n]$ with $C \cap D=\emptyset$ ", and then rewrite the rest of the proof accordingly.
(D2) More combinatorial proofs.
(a) Give a combinatorial proof that

$$
\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1}
$$

Hint: invent a question involving a club with $n+1$ members (or something strictly more creative, if you like), and imagine that you are one of the club members.
(b) Give a combinatorial proof that for all $n \geq 1$,

$$
\sum_{k=1}^{n} k\binom{n}{k}=n 2^{n-1}
$$

(c) Give a combinatorial proof that for all $n \geq 1$,

$$
\sum_{k=0}^{n} 2^{k}=2^{n+1}-1
$$

(d) Give a combinatorial proof that for all $n \geq 1$,

$$
\binom{2 n}{2}=2\binom{n}{2}+n^{2}
$$

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Use induction on n to prove that for all $n \geq 1$,

$$
\sum_{k=0}^{n} 2^{k}\binom{n}{k}=3^{n}
$$

Hint: use the identity

$$
\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1}
$$

in your inductive step.
(H2) Prove the identity

$$
k\binom{n}{k}=n\binom{n-1}{k-1}
$$

(a) using the formula for binomial coefficients (involving factorials), and
(b) using a combinatorial proof.
(H3) Give a combinatorial proof that for all $n \geq 2$,

$$
\sum_{k=2}^{n} k(k-1)\binom{n}{k}=2^{n-2} n(n-1)
$$

(H4) Give a combinatorial proof that for all $n \geq 1$,

$$
\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}=\binom{2 n}{n}
$$

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Give a combinatorial proof that for all $n \geq 1$ and all $r \in[n]$,

$$
\sum_{k=r}^{n}\binom{k}{r}=\binom{n+1}{r+1}
$$

