Spring 2024, Math 579: Week 6 Problem Set Due: Thursday, March 7th, 2024 Set Partitions

Discussion problems. The problems below should be worked on in class.
(D1) A Pascal-like recurrence. Recall that $S(n, k)$ denotes the number of set partitions of $[n]$ into exactly k blocks (called the Stirling numbers of the 2nd kind).
(a) Find $S(5,4), S(4,3)$, and $S(4,4)$ by listing set partitions.
(b) Verify $S(n, k)=S(n-1, k-1)+k S(n-1, k)$ holds for $n=5, k=4$.
(c) Give a combinatorial proof that, for $n-1 \geq k \geq 1$, we have

$$
S(n, k)=S(n-1, k-1)+k S(n-1, k) .
$$

Hint: count the ways to partition an n-person class you are in into k nonempty groups.
(D2) Bell numbers. Let $B(n)$ denote the total number of set partitions of $[n]$, that is,

$$
B(n)=\sum_{k=1}^{n} S(n, k)
$$

(called the n-th Bell number).
(a) Find $B(1), B(2), B(3)$, and $B(4)$. Which of these did you find in the prelim problem?
(b) Find $B(5)$ using the identity

$$
B(n+1)=1+\sum_{k=1}^{n}\binom{n}{k} B(k) .
$$

(c) Give a combinatorial proof of the identity in part (b).
(d) Give a combinatorial proof that for all $n \geq 1$,

$$
B(n+1)-B(n)=\sum_{k=1}^{n} k S(n, k)
$$

(D3) An unfortunate formula for Stirling numbers. For $n \geq k \geq 1$, let $O_{n, k}$ denote the total number of surjective functions $[n] \rightarrow[k]$ (that is, functions in which every element of $[k]$ is the image of some element of $[n]$).
(a) Find all functions [3] \rightarrow [2]. Label each as "surjective" or "not surjective" accordingly.
(b) Find a formula for the total number of functions $[n] \rightarrow[k]$.
(c) Show that $O_{5,2}=2^{5}-2$. Hint: why is it expressed like this?
(d) Argue that $O_{4,3}=3^{4}-\binom{3}{2} 2^{4}+\binom{3}{1} 1^{4}$.
(e) Using the idea in the previous part, find an expression for $O_{5,3}$.
(f) For $n \geq k$, use the Sieve formula to show that

$$
O_{n, k}=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j}(k-j)^{n}
$$

Hint: first, verify this expression matches what you found in the previous part.
(g) Verify $O_{4,3}=\binom{4}{2} \cdot 3 \cdot 2$. Hint: why is it expressed like this?
(h) Give a combinatorial proof that $S(n, k)=O_{n, k} / k!$.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Use the recurrence identity $S(n, k)=S(n-1, k-1)+k \cdot S(n-1, k)$ from class to complete the next 3 rows of the triangle of Stirling numbers of the 2nd kind (the analog of Pascal's triangle where the entry in row n and position k is $S(n, k))$.
Note: you do not need to show work for this problem.

				1		
		1		1		
	1		3		1	
1		7		6		1

(H2) Find a closed formula for $S(n, n-2)$ in terms of n, valid for $n \geq 3$.
(H3) Find a formula for the number of partitions of $[n]$ into blocks of size exactly 2.
(H4) Let $F(n)$ denote the number of set partitions of $[n]$ with no singleton blocks. Prove that $B(n)=F(n)+F(n+1)$.
(H5) Find a recursive formula for $F(n+1)$ in terms of $F(k)$ for $k \leq n$, and give a combinatorial proof of its correctness.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Give a combinatorial proof that

$$
B(n+m)=\sum_{j=1}^{m} S(m, j)\left(j^{n}+\sum_{k=1}^{n}\binom{n}{k} j^{n-k} B(k)\right)
$$

(C2) Give a combinatorial proof that

$$
S(n, k)=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j}(k-j)^{n}
$$

Hint: Problem (D3) provides a potential path to complete this problem.

