Spring 2024, Math 579: Week 12 Problem Set
 Due: Thursday, April 25th, 2024
 Colorings and Bipartite Graphs

Discussion problems. The problems below should be worked on in class.
(D1) Chromatic polynomials. Fix a graph G with $n=|V(G)|$. The chromatic function of G is

$$
\chi_{G}(k)=\# \text { proper colorings of } G \text { with } k \text { colors. }
$$

(a) Find the chromatic function $\chi_{G}(k)$ of each of the following graphs G.
(i) The competely disconnected graph D_{n} with n vertices and no edges.
(ii) The graph K_{5} with one edge removed.
(iii) The complete graph K_{n}.
(iv) The path graph P_{n}.

Write each answer as a polynomial in k.
(b) The complete bipartite graph is the bipartite graph $K_{\ell, m}=(X, Y)$ with $|X|=\ell$ and $|Y|=m$ such that every vertex of X is adjacent to every vertex of Y.
Find the chromatic function $\chi_{G}(k)$ where $G=K_{2,2}$ and $G=K_{2,3}$.
(c) Suppose G has n vertices, and let c_{i} denote the number of ways to properly color G using exactly i distinct colors. Consider (without proof, for the moment) the equality

$$
\chi_{G}(k)=\sum_{i=1}^{n}\binom{k}{i} c_{i}=\binom{k}{1} c_{1}+\binom{k}{2} c_{2}+\cdots+\binom{k}{n} c_{n}
$$

for all $k \geq 1$. Find c_{1}, c_{2}, and c_{3} for $G=K_{3}$, and use this to find $\chi_{G}(k)$.
(d) Sketch a combinatorial proof of the identity in part (c).
(e) Fix an edge $e=(v, w) \in E(G)$. Consider (without proof, for the moment) the equality

$$
\chi_{G}(k)=\chi_{G \backslash e}(k)-\chi_{G / e}(k) .
$$

Using only this equality and part (a)(i), find the chromatic polynomial of $G=K_{3}$.
(f) Complete the following combinatorial proof of the equality in part (e).

Proof. Consider the proper colorings of $G \backslash e$ (there are \qquad total). For each, either (i) v and w have distinct colors, in which case it is also a proper coloring of G, or (ii) v and w have identical colors, in which case a proper coloring of G / e can be obtained by \qquad . As such, $\chi_{G \backslash e}(k)=$ \qquad $+$ \qquad -.
(g) Prove $\chi_{G}(k)$ is a polynomial using induction on the number of edges of G (this is why we actually call $\chi_{G}(k)$ the chromatic polynomial and not just the chromatic function). Hint: use part (a)(i) as your base case, and part (e) in your inductive step.
(h) Explain briefly why your proof in the previous part guarantees (i) the coefficients of $\chi_{G}(k)$ are all integers, and (ii) the degree of $\chi_{G}(k)$ is n.

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Find the chromatic polynomial of each of the following graphs.
(a) The graph G obtained from K_{n} by removing one edge.
(b) The graph $K_{2, n}$.
(H2) Fix a graph G with n vertices and m edges.
(a) Prove that the leading coefficient of $\chi_{G}(k)$ (that is, the coefficient of k^{n}) is 1.
(b) Prove that the coefficient of k^{n-1} in the chromatic polynomial $\chi_{G}(k)$ equals $-m$.

Hint: each part of this problem can be proven in (at least) 2 distinct ways. One way uses a direct proof with Problem (D1)(c), and another uses induction with Problem (D1)(e).
(H3) Fix a connected graph G with n vertices. Prove that G is a tree if and only if

$$
\chi_{G}(k)=k(k-1)^{n-1}
$$

Hint: use induction for the forward direction and Problem (H2) for the backwards direction.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) Solve all parts of Problem (H2) using a different method than you already did.

