Spring 2024, Math 579: Week 13 Problem Set
 Due: Thursday, May 2nd, 2024
 Planar Graphs

Discussion problems. The problems below should be worked on in class.
(D1) Counting faces of planar graphs. For a planar graph G, let V, E, and F denote the number of vertices, edges, and faces of G, respectively.
(a) Compute the quantity $V-E+F$ for each of the following graphs.

(b) Have each group member draw their favorite connected planar graph with at least 8 vertices and 15 edges, and compute $V-E+F$ for their graph.
(c) Notice this came out the same for each graph. This is known as Euler's theorem for planar, connected graphs. We will prove this by induction on E.
(i) Base case: prove Euler's theorem when $E=V-1$. Why is this the base case?
(ii) Carefully and precisely, write the inductive hypothesis.
(iii) What can happen when an edge $e \in E(G)$ is removed?
(iv) Finish your proof that Euler's theorem holds for any planar graph G.
(D2) Duals of planar graphs and a test for planarity.
(a) Justify the following claim: if a graph G has m edges and vertices v_{1}, \ldots, v_{n}, then

$$
\operatorname{deg}\left(v_{1}\right)+\cdots+\operatorname{deg}\left(v_{n}\right)=2 m .
$$

(b) Use Euler's Theorem to give a non-pictorial proof that K_{5} is not planar. Hint: how many faces would it have, and how many sides would each need to have?
(c) Use Euler's Theorem to give a non-pictorial proof that $K_{3,3}$ is not planar. Hint: is it possible for a face to have 3 boundary edges?
(d) Fix a simple graph G with V vertices and E edges.
(a) Prove that if G is planar, then $3 F \leq 2 E$.

Hint: what can be said about vertex degrees in G^{*} ?
(b) Use the previous part and Euler's theorem to prove if G is planar, then $E \leq 3 V-6$.
(c) Is it true that any connected graph satisfying $E \leq 3 V-6$ is planar?

Homework problems. You must submit all homework problems in order to receive full credit.
(H1) Prove that if any 2 edges are removed from the graph K_{6}, the result is not planar. Is the same true if we remove 3 edges?
(H2) Suppose G is a connected planar graph in which every face has at least 4 boundary edge. Prove $E \leq 2 V-4$.
Clarification: the number of boundary edges of a face F is the number of edges traversed when walking around the boundary of F. For example, in the cycle graph with 4 vertices, the inside face and outside face each have 4 boundary edges, but in the path graph with 4 vertices, the outside face has 6 boundary edges.

