Spring 2024, Math 579: Preliminary Problem Set 2
 Due: Thursday, February 1st, 2024
 Pigeon-hole Principle and Inclusion-Exclusion

Preliminary problems. These problems should be completed before discussion on Thursday.
(P1) Suppose, at a given airport, there are 1500 takeoffs per day. Use the pigeon hole principle to conclude that at least 2 planes takeoff within 1 minute of each other.
Clearly specify the pigeons and holes/boxes in your argument.
$(\mathrm{P} 2)$ Given the following information, use the Sieve formula to compute $\left|A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right|$.

$$
\begin{aligned}
& \left|A_{1}\right|=15 \quad\left|A_{1} \cap A_{2}\right|=5 \quad\left|A_{1} \cap A_{2} \cap A_{3}\right|=1 \quad\left|A_{1} \cap A_{2} \cap A_{3} \cap A_{4}\right|=1 \\
& \left|A_{2}\right|=10 \quad\left|A_{1} \cap A_{3}\right|=3 \quad\left|A_{1} \cap A_{2} \cap A_{4}\right|=5 \\
& \left|A_{3}\right|=6 \quad\left|A_{1} \cap A_{4}\right|=5 \quad\left|A_{1} \cap A_{3} \cap A_{4}\right|=1 \\
& \left|A_{4}\right|=5 \quad\left|A_{2} \cap A_{3}\right|=2 \quad\left|A_{2} \cap A_{3} \cap A_{4}\right|=1 \\
& \left|A_{2} \cap A_{4}\right|=5 \\
& \left|A_{3} \cap A_{4}\right|=1 \\
& \left|A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right|=
\end{aligned}
$$

