Winter 2017, Math 148: Week 1 Problem Set
 Due: Wednesday, January 18th, 2017
 Modular Arithmetic

Discussion problems. The problems below should be completed in class.
(D1) Modular addition and multiplication.
(a) Determine which of the following are true without using a calculator.
(i) $1234567 \cdot 90123 \equiv 1 \bmod 10$.
(ii) $2468 \cdot 13579 \equiv-3 \bmod 25$.
(iii) $2^{58} \equiv 3^{58} \bmod 5$.
(iv) $1234567 \cdot 90123=111262881711$.
(b) The order of an element $a \in \mathbb{Z}_{n}$ is the smallest integer k such that adding a to itself k times yields $0 \in \mathbb{Z}_{n}$.
(i) Find the order of every element of \mathbb{Z}_{12}.
(ii) Find a formula for the order of $[x] \in \mathbb{Z}_{n}$ with $0 \leq x \leq n-1$ in terms of x and n. Briefly justify your formula (you are not required to write a formal proof).
(iii) For which n does every nonzero element of \mathbb{Z}_{n} have order n ?
(D2) Divisibility rules. In class yesterday, we saw (and proved!) a trick that let us to quickly determine when an integer is divisible by 9 .
(a) Prove that an integer x is divisible by 3 if and only if the sum of its digits (in base 10) is divisible by 3 .
(b) Using part (a), develop a criterion for when an integer is divisible by 15.
(D3) Multiplicative inverses. Two elements $a, b \in \mathbb{Z}_{n}$ are multiplicative inverses if $a \cdot b=[1]_{n}$. An element $a \in \mathbb{Z}_{n}$ is invertible if it has a multiplicative inverse.
(a) Determine which elements of $\mathbb{Z}_{6}, \mathbb{Z}_{7}$ and \mathbb{Z}_{8} have multiplicative inverses.
(b) What do you notice about your answer to part (a)? State your conjecture formally.
(c) Prove that $[1]_{n}$ is invertible in \mathbb{Z}_{n}. Prove that $[0]_{n}$ is not invertible in \mathbb{Z}_{n}.
(D4) Cartesian products. Given positive integers m and n, let

$$
\mathbb{Z}_{n} \times \mathbb{Z}_{m}=\left\{(a, b): a \in \mathbb{Z}_{n}, b \in \mathbb{Z}_{m}\right\}
$$

In particular, each element of $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ is an ordered pair whose first value is an element of \mathbb{Z}_{n} and whose second value is an element of \mathbb{Z}_{m}. Define addition and multiplication on $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ by $(a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}\right)$ and $(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a \cdot a^{\prime}, b \cdot b^{\prime}\right)$, respectively.
(a) How many elements does $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ have?
(b) The order of an element $(a, b) \in \mathbb{Z}_{n} \times \mathbb{Z}_{m}$ is the smallest integer k such that adding (a, b) to itself k times yields $(0,0)$ (or, written more compactly, $k(a, b)=(0,0)$).
(i) What is the highest order of an element of $\mathbb{Z}_{5} \times \mathbb{Z}_{3}$? What about $\mathbb{Z}_{6} \times \mathbb{Z}_{4}$?
(ii) Can you give a general formula for the highest order of an element in $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$?
(c) Which elements of $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ are invertible?

Required problems. As the name suggests, you must submit all required problem with this homework set in order to receive full credit.
(R1) Write the addition and multiplication tables for \mathbb{Z}_{6}. You can leave off the bracket notation and simply denote the elements by $0,1,2,3,4,5 \in \mathbb{Z}_{6}$.
(R2) Find all simultaneous solutions to the equations

$$
x+2 y=4 \quad \text { and } \quad 4 x+3 y=4
$$

in \mathbb{Z}_{7}. Do the same in \mathbb{Z}_{6}.
(R3) Prove that an integer x is divisible by 4 if and only if the last two digits of x in base 10 form a 2-digit number that is divisible by 4 .
(R4) Prove that if x and y are each invertible in \mathbb{Z}_{n}, then $x y$ and x^{-1} (meaning the multiplicative inverse of x) are invertible in \mathbb{Z}_{n}.

Selection problems. You are required to submit all parts of one selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.
(S1) (a) Suppose $\left(x_{n} \cdots x_{1} x_{0}\right)_{10}$ expresses x in base 10. Prove that

$$
x \equiv x_{0}-x_{1}+x_{2}-x_{3}+\cdots+(-1)^{n} x_{n} \bmod 11 .
$$

(b) Use part (a) to decide whether 1213141516171819 is divisible by 11.
(S2) Determine whether each of the following is true or false. Prove each true statement, and give a counterexample for each false statement. For each, assume that $n \geq 2$ and $x, y, z \geq 0$ are all integers.
(a) If $x \equiv y \bmod n$, then $x z \equiv y z \bmod n$.
(b) If $x z \equiv y z \bmod n$, then $x \equiv y \bmod n$.
(c) If $x y \equiv 0 \bmod n$, then $x \equiv 0 \bmod n$ or $y \equiv 0 \bmod n$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) We saw in class that an integer x is divisible by 9 if and only if the sum of the digits (base 10) of x is divisibile by 9 , and you proved in discussion that the same holds for divisibility by 3 . Fix a base b. State and prove a characterization of the n for which any integer x is divisible by n if and only if the sum of the digits (base b) of x is divisible by n (in particular, for $b=10$, this only holds for $n=3$ and $n=9$).

