Winter 2017, Math 148: Week 3 Problem Set Due: Wednesday, February 1st, 2017 Polynomials and Finite Fields

Discussion problems. The problems below should be completed in class.

- (D1) The polynomial ring $\mathbb{Z}_n[x]$.
 - (a) Which elements of $\mathbb{Z}_3[x]$ are units? For which n does this hold?
 - (b) Can you find a unit in $\mathbb{Z}_4[x]$ with positive degree?
 - (c) For which n does $\mathbb{Z}_n[x]$ have zero-divisors?
 - (d) Is it possible to bound the degrees zero-divisors can have in $\mathbb{Z}_6[x]$? How about $\mathbb{Z}_n[x]$?
 - (e) Which elements of $\mathbb{Z}_4[x]$ are zero-divisors?
 - (f) Find the common divisor of 2x and 4x over \mathbb{Z}_6 of highest degree.
- (D2) Factoring polynomials over \mathbb{Z}_n .
 - (a) Factor $x^3 + 3x + 1$ and $x^3 + 3x^2 + 2x + 4$ over \mathbb{Z}_5 as a product of irreducibles.
 - (b) Factor $x^4 + 4$ over \mathbb{Z}_3 . Does it factor over \mathbb{Q} ?
 - (c) Factor $x^5 + 2$ over \mathbb{Z}_3 . Does it factor over \mathbb{Q} ?
 - (d) Find all roots of 3x + 3 = 0 over \mathbb{Z}_6 . Why is this surprising?
 - (e) Find a linear polynomial over \mathbb{Z}_6 with no solutions.
 - (f) Consider the polynomial $f(x) = x^2 x = (x)(x-1)$ over \mathbb{Z}_6 . Find all roots of f(x) and the roots of its factors x and x 1. What do you notice?
 - (g) Find all factorizations of $f(x) = x^2 x$ over \mathbb{Z}_6 .
- (D3) Finite fields. The goal of this problem is to systematically build "small" finite fields.
 - (a) Suppose $F_3 = \{0, 1, a\}$ is a field with exactly 3 elements. Fill in as much of the addition and multiplication table as you can using only the field axioms.
 - (b) How many entries in your answer to part (a) remain? Which field(s) can F_3 be?
 - (c) Do the same for a field $F_4 = \{0, 1, a, b\}$ with exactly 4 elements.
 - (d) What is the characteristic of F_4 ? What familiar additive group did you obtain? With this in mind, is the multiplication structure what you expected it to be?
 - (e) Suppose F_6 is a field with exactly 6 elements. Can F_6 have characteristic 6?
 - (f) It turns out that the characteristic of a finite ring must divide the size of the ring. With this in mind, for each possible characteristic of F_6 , try writing out the addition and multiplication tables. When are you able to fill both tables?
 - (g) What can you conclude about F_6 ?
 - (h) Fill in the addition and multiplication tables for a field $F_5 = \{0, 1, a, b, c\}$ with exactly 5 elements (this is tricky, but a fun challenge!). What ring(s) do you get?

Required problems. As the name suggests, you must submit *all* required problem with this homework set in order to receive full credit.

- (R1) Consider the polynomials $f(x) = x^5 + 3x^4 7x^3 + 5x + 4$ and $g(x) = 2x^2 + x + 5$. Divide f(x) by g(x) over \mathbb{Z}_3 . Do the same over \mathbb{Z}_{11} . What does this tell you about whether or not f(x) is reducible over \mathbb{Q} ?
- (R2) Find the greatest common divisor of $f(x) = x^6 + x^4 + x^2$ and $g(x) = x^4 + x^3 + x$ over \mathbb{Z}_3 . Would your answer be different over \mathbb{Q} ?
- (R3) Factor $f(x) = x^5 + 4x^4 + 8x^3 + 11x$ over \mathbb{Q} . Hint: first try to factor f(x) over some small finite fields, like \mathbb{Z}_3 and \mathbb{Z}_5 .
- (R4) Prove that a finite field must have prime characteristic. You may *not* use the fundamental theorem of finite fields.

Selection problems. You are required to submit all parts of *one* selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.

- (S1) Consider the set $R = \{a_n x^n + \dots + a_1 x + a_0 \in \mathbb{R}[x] : a_0 \in \mathbb{Z}\}$ of polynomials over \mathbb{R} with integer constant term.
 - (a) Show that R is a ring under the usual addition and multiplication of polynomials.
 - (b) Show that some elements of R cannot be factored into a finite product of irreducibles. Hint: consider the element f(x) = x.
- (S2) Consider the set $R = \{a_n x^n + \dots + a_1 x + a_0 \in \mathbb{R}[x] : a_1 = 0\}$ of polynomials over \mathbb{R} with no linear term.
 - (a) Show that R is a ring under the usual addition and multiplication of polynomials.
 - (b) Show that there are elements of R that can be factored in more than one distinct way. Hint: consider the element $f(x) = x^6$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Prove that any finite ring with no zero-divisors is a field.