Winter 2017, Math 148: Week 5 Problem Set Due: Wednesday, February 15th, 2017 Applications of Finite Fields

Discussion problems. The problems below should be completed in class.

(D1) Linear algebra over finite fields.

- (a) Find the number of lines (i.e. 1-dimensional linear subspaces) in 𝔽²₅, the 2-dimensional vector space over 𝔽₅.
- (b) For p prime, how many 1-dimensional linear subspaces does \mathbb{F}_p^2 have?
- (c) Find a sequence $\{0\} \subsetneq A_1 \subsetneq A_2 \subsetneq \mathbb{F}_5^3$ of linear subspaces of \mathbb{F}_5^3 . Are there longer sequences of linear subspaces in \mathbb{F}_5^3 ?
- (d) Find the longest sequence $\{0\} \subsetneq A_1 \subsetneq A_2 \subsetneq \cdots \subsetneq \mathbb{Z}_4^2$ of linear subspaces of \mathbb{Z}_4^2 . What does this tell you about "dimension" over \mathbb{Z}_4 ? Note that \mathbb{Z}_4 has zero-divisors!
- (e) Find all 1-dimensional linear subspaces of \mathbb{F}_4^2 . Remember: the elements of \mathbb{F}_4 look like polynomials in a variable z!
- (f) How many 2-dimensional linear subspaces does \mathbb{F}_5^3 have?
- (g) Conjecture a formula for the number of 2-dimensional subspaces of $\mathbb{F}_{p^r}^d$. What about the number of k-dimensional subspaces?
- (D2) Latin squares. Recall that a latin square of order n is an $n \times n$ grid filled with values $1, \ldots, n$ (or any set of n symbols) such that no entry is duplicated in any row and column. Recall further that two latin squares A and B of order n are mutually orthogonal if each pair (A_{ij}, B_{ij}) for $i, j \leq n$ occurs exactly once.
 - (a) Compare within your group the latin squares you found in preliminary problem (P2). Is there a third latin square that is mutually orthogonal to each of your first two?
 - (b) Given below is the playing card example from Wednesday with two mutually orthogonal latin squares of order n = 4 (one using the symbols {A, K, Q, J} and the other using the symbols {♠, ♣, ♡, ◊}). Can you find a third latin square that is mutually orthogonal to *both* of these?

A♠	$K\heartsuit$	$Q\diamond$	J ♣
J\$	Q ♣	K ♠	A♡
K \$	A\$	J	Q♠
$Q\heartsuit$	J ♠	A \$	$K\Diamond$

(c) The following result tells us how to construct latin squares of order p^r for p prime. **Theorem.** For each nonzero $a \in \mathbb{F}_{p^r}$, the $p^r \times p^r$ grid with entries given by

$$L_{i,j} = ai + j$$
 for $i, j \in \mathbb{F}_{p^r}$

is a latin square of order p^r . Moreover, for distinct nonzero $a, a' \in \mathbb{F}_{p^r}$, the latin squares constructed above are mutually orthogonal.

Use the above theorem to construct 3 mutually orthogonal latin squares of order 5. Verify that your latin squares are in fact mutually orthogonal. *Without using the theorem*, find a fourth mutually orthogonal latin square. Can there be more than one?

- (d) Using the theorem in part (c), find 3 mutually orthogonal latin squares of order n = 4.
- (e) Attempt to construct a latin square of order n = 4 using the theorem in part (c) using \mathbb{Z}_4 in place of the finite field. What breaks?

Required problems. As the name suggests, you must submit *all* required problem with this homework set in order to receive full credit.

- (R1) Draw the 2-dimensional vector space \mathbb{F}_9^2 . Indicate which points lie in the span of $(1,2) \in \mathbb{F}_9^2$.
- (R2) Find the number of bases of $\mathbb{F}_{p^r}^2$, a 2-dimensional vector space over \mathbb{F}_{p^r} .
- (R3) Suppose \mathbb{Z}_6 is used in place of the finite field in the theorem in part (c) of discussion problem (D2). Which of the 5 squares are actually latin squares? Of those that are in fact latin squares, are any two mutually orthogonal?
- (R4) The goal of this problem is to prove that there are at most n-1 mutually orthogonal latin squares of order n. We will use the symbols $\{1, \ldots, n\}$.
 - (a) Suppose A and B are mutually orthogonal latin squares. Prove that if you switch the locations of all *i*'s and *j*'s in A (i.e. replace every *i* entry with a *j* and every *j* entry with an *i*), the resulting latin square A' is also mutually orthogonal to B.
 - (b) A latin square is said to be in *standard form* if the entries in the top row appear in order. Suppose A and B are mutually orthogonal latin squares, and suppose A' and B' are latin squares in standard form obtained from A and B respectively by swapping entries as described in part (a). Prove that A' and B' are mutually orthogonal.
 - (c) Prove that it is impossible to have latin squares A_1, \ldots, A_n of order n in such a way that any two are mutually orthogonal.