Winter 2017, Math 148: Week 7 Problem Set Due: Wednesday, March 1st, 2017 Block Designs

Discussion problems. The problems below should be completed in class.

(D1) Building block designs from block designs. Consider the following 12 subsets of $\{1, \ldots, 9\}$.

$\{1,$	2,	$3\}$	$\{1,$	4,	$7\}$	$\{1,$	5,	$9\}$	$\{1,$	6,	8}
$\{4,$	5,	$6\}$	$\{2,$	5,	8}	$\{2,$	6,	7	$\{2,$	4,	$9\}$
$\{7,$	8,	9}	$\{3,$	6,	$9\}$	$\{3,$	4,	8}	$\{3,$	5,	$7\}$

- (a) For which t is the above a t-design? What are the values of v, k, r and b in each case?
- (b) Replace each set in the above example with its complement in $\{1, \ldots, 9\}$. For which t does this form a t-design? These are called *complementary designs*. What are the values of v, k, r and b in each case?
- (c) Based on your observation in part (c), state a conjecture for arbitrary 2-designs. Don't worry about proving your conjecture; you will do this on your homework!
- (d) Find an explicit formula for v, k, r and b in part (d) case (your formulas will depend on v, k, r and b in the original example).
- (D2) Designs from finite fields. The goal of this problem is to prove the following theorem.

Theorem. If $q = p^r$ for p prime and $r \ge 1$, there is a 2-design with $v = q^2$, k = q, r = 1.

- (a) Let's consider the case q = 3. Draw the 2-dimensional vector space $V = \mathbb{Z}_3^2$ over \mathbb{Z}_3 .
- (b) Find all lines (not necessarily containing the origin) in \mathbb{Z}_3^2 , written as sets of points. You may find it easier to shorten points from (2, 1) to simply "21" in your list.
- (c) Does this collection of sets constitute a 2-design? What are v, k, r, and b?
- (d) We now generalize the above construction from \mathbb{Z}_3 to any finite field. Suppose \mathbb{F}_q is a field with q elements, let $V = \mathbb{F}_q^2$ denote a 2-dimensional vector space over \mathbb{F}_q , and let $B_1, \ldots, B_b \subset V$ denote the set of lines in V. For these to form a 2-design $(q^2, q, 1)$,
 - (i) each block must have the same size q,
 - (ii) every element must lie in the same number of blocks, and
 - (iii) any pair of elements must occur together in exactly 1 block.

Restate each of the above requirements for B_1, \ldots, B_b in terms of geometry.

(e) Any line $L \subset V$ can be written as follows for some $a, b, c \in \mathbb{F}_q$:

$$L = \{ (x, y) \in V : ax + by = c \}$$

Prove that any two lines with more than one point in common must be equal as sets. Hint: given $(x_1, y_1), (x_2, y_2) \in L$ distinct, express a, b and c terms of x_1, y_1, x_2 and y_2 .

- (f) Prove that any line $L \subset V$ contains exactly q points.
- (g) Which requirement listed in part (d) follows from the other two? With this in mind, find the number of lines containing each point of V (in terms of q).

Required problems. As the name suggests, you must submit *all* required problem with this homework set in order to receive full credit.

- (R1) For each triple (v, k, r) below, construct a block design (1-design) with parameters (v, k, r), or prove that no such design exists.
 - (a) (v,k,r) = (7,6,6)(b) (v,k,r) = (6,3,1)(c) (v,k,r) = (5,2,1)(d) (v,k,r) = (9,6,4)
- (R2) Suppose that there exists a 5-design with parameters (v, k, r) = (12, 6, 1). Such a design is also an s-design for any $s \le 5$; find the corresponding parameters for each s. How many blocks must this design have?
- (R3) Find a 5-design with parameters (v, k, r) = (6, 5, 1), or argue that no such design exists.
- (R4) Is it possible there exists a 3-design with parameters (v, k, r) = (15, 6, 2)? What about a 4-design with parameters (v, k, r) = (11, 5, 1)?
- (R5) Find a 2-design with parameters (v, k, r) = (16, 4, 1) using the theorem in problem (D2). Hint: what field should you use, and what do the elements of that field look like?

Selection problems. You are required to submit all parts of *one* selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.

- (S1) Fix a 2-design $B_1, \ldots, B_b \subset \{1, \ldots, v\}$ with parameters (v, k, r), and let $B_i^c = \{1, \ldots, v\} \setminus B_i$ for each $i \leq b$. Prove that the blocks B_1^c, \ldots, B_b^c also form a 2-design. Is the complement of a 3-design always a 3-design?
- (S2) Fix a 2-design of the form (v, 3, 1). Prove that v must have the form 6n + 1 or 6n + 3 for some $n \ge 0$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.

(C1) Fix a finite field \mathbb{F}_q , and let $V = \mathbb{F}_q^3$ denote a 3-dimensional vector space over \mathbb{F}_q . A hyperplane is a subset $H \subset V$ given by

$$H = \{(x, y, z) \in V : ax + by + cz = d\}$$

for some $a, b, c, d \in \mathbb{F}_q$ (in particular, note that a hyperplane need not contain the origin).

- (a) Find the number of hyperplanes in V (as a function of q).
- (b) Determine for which t the collection of all hyperplanes in V forms a t-design.