Winter 2018, Math 148: Week 1 Problem Set
 Due: Wednesday, January 17th, 2018
 Modular Arithmetic

Discussion problems. The problems below should be completed in class.
(D1) Modular addition and multiplication.
(a) Determine which of the following are true without using a calculator.
(i) $1234567 \cdot 90123 \equiv 1 \bmod 10$.
(ii) $2468 \cdot 13579 \equiv-3 \bmod 25$.
(iii) $2^{58} \equiv 3^{58} \bmod 5$.
(iv) $1234567 \cdot 90123=111262881711$.
(v) There exists $x \in \mathbb{Z}$ such that $x^{2}+x \equiv 1 \bmod 2$.
(vi) There exists $x \in \mathbb{Z}$ such that $x^{3}+x^{2}-x+1=1522745$.
(b) Determine whether each of the following is true or false. Give an explanation for each true statement, and a counterexample for each false statement. Assume throughout that $n \geq 2$ and $x, y, z \geq 0$ are all integers.
(i) If $x \equiv y \bmod n$, then $x z \equiv y z \bmod n$.
(ii) If $x z \equiv y z \bmod n$, then $x \equiv y \bmod n$.
(iii) If $x y \equiv 0 \bmod n$, then $x \equiv 0 \bmod n$ or $y \equiv 0 \bmod n$.
(c) The order of an integer $x \in\{0, \ldots, n-1\}$ modulo n is the smallest integer k such that adding x to itself k times yields 0 modulo n, that is $k x \equiv 0 \bmod n$.
(i) Find the order of each integer $x=0, \ldots, 11$ modulo $n=12$.
(ii) For which n does every nonzero x have order n ?
(iii) Find a formula for the order of x modulo n in terms of x and n. Briefly justify your formula (you are not required to write a formal proof).
(D2) Multiplicative inverses. Two elements $a, b \in \mathbb{Z}_{n}$ are multiplicative inverses if $a \cdot b=[1]_{n}$. An element $a \in \mathbb{Z}_{n}$ is invertible if it has a multiplicative inverse.
(a) Determine which elements of $\mathbb{Z}_{6}, \mathbb{Z}_{7}$ and \mathbb{Z}_{8} have multiplicative inverses.
(b) What do you notice about your answer to part (a)? State your conjecture formally.
(c) Prove that $[1]_{n}$ is invertible in \mathbb{Z}_{n}. Prove that $[0]_{n}$ is not invertible in \mathbb{Z}_{n}.
(D3) Divisibility rules. In the last lecture, we saw (and proved!) a trick that let us to quickly determine when an integer is divisible by 9 .
(a) Prove that an integer x is divisible by 3 if and only if the sum of its digits (in base 10) is divisible by 3 .
(b) Using part (a), develop a criterion for when an integer is divisible by 15.

Required problems. As the name suggests, you must submit all required problems with this homework set in order to receive full credit.
(R1) Write the addition and multiplication tables for \mathbb{Z}_{6}. You can leave off the [] $]_{6}$ notation and simply denote the elements by $0,1,2,3,4,5 \in \mathbb{Z}_{6}$.
(R2) Determine whether each of the following statements is true or false. Justify your answer (you are not required to give a formal proof). You may not use a calculator.
(a) 14323341327 is prime.
(b) There exists $x \in \mathbb{Z}$ such that $x^{2}+1=123456789$.
(R3) Find all $x, y \in \mathbb{Z}_{7}$ that are solutions to both of the equations

$$
x+2 y=[4]_{7} \quad \text { and } \quad 4 x+3 y=[4]_{7}
$$

in \mathbb{Z}_{7}. Do the same for $x, y \in \mathbb{Z}_{6}$ (where $[4]_{7}$ is replaced with $[4]_{6}$).
(R4) Prove that an integer x is divisible by 4 if and only if the last two digits of x in base 10 form a 2-digit number that is divisible by 4 .

Selection problems. You are required to submit all parts of one selection problem with this problem set. You may submit additional selection problems if you wish, but please indicate what you want graded. Although I am happy to provide written feedback on all submitted work, no extra credit will be awarded for completing additional selection problems.
(S1) (a) Suppose $\left(x_{n} \cdots x_{1} x_{0}\right)_{10}$ expresses x in base 10. Prove that

$$
x \equiv x_{0}-x_{1}+x_{2}-x_{3}+\cdots+(-1)^{n} x_{n} \bmod 11
$$

(b) Use part (a) to decide whether 1213141516171819 is divisible by 11.
(S2) The goal of this question is to prove that the "freshman's dream" equation

$$
(x+y)^{p}=x^{p}+y^{p}
$$

holds for any $x, y \in \mathbb{Z}_{p}$ when p is prime.
(a) Recall that for any $n, k \geq 0$,

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

is an integer. Prove that if p is prime and $1 \leq k \leq p-1$, then p divides $\binom{p}{k}$.
(b) Recall that for any $x, y \in \mathbb{R}$,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Use this to prove the Freshman's Dream equation for $x, y \in \mathbb{Z}_{p}$.

Challenge problems. Challenge problems are not required for submission, but bonus points will be awarded for submitting a partial attempt or a complete solution.
(C1) We saw in class that an integer x is divisible by 9 if and only if the sum of the digits (base 10) of x is divisibile by 9 , and you proved in discussion that the same holds for divisibility by 3 . Fix a base b. State and prove a characterization of the n for which the following holds: an integer x is divisible by n if and only if the sum of the digits (base b) of x is divisible by n. As an example, for $b=10$, this only holds for $n=3$ and $n=9$.

